When job tasks are automated, does this augment or diminish the value of labor in the tasks that remain? The authors argue the answer depends on whether removing tasks raises or reduces the expertise required for remaining non-automated tasks. Since the same task may be relatively expert in one occupation and inexpert in another, automation can simultaneously replace experts in some occupations while augmenting expertise in others. The paper proposes a conceptual model of occupational task bundling that predicts that changing occupational expertise requirements have countervailing wage and employment effects: automation that decreases expertise requirements reduces wages but permits the entry of less expert workers; automation that raises requirements raises wages but reduces the set of qualified workers. The authors develop a novel, content-agnostic method for measuring job task expertise, and use it to quantify changes in occupational expertise demands over four decades attributable to job task removal and addition. They document that automation has raised wages and reduced employment in occupations where it eliminated inexpert tasks, but lowered wages and increased employment in occupations where it eliminated expert tasks. These effects are distinct from—and in the case of employment, opposite to—the effects of changing task quantities. The expertise framework resolves the puzzle of why routine task automation has lowered employment but often raised wages in routine task-intensive occupations. It provides a general tool for analyzing how task automation and new task creation reshape the scarcity value of human expertise within and across occupations.