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What’s the difference between these two occupations?

Crossing Guard
Median annual earnings $36,370

Air Traffic Controller
Median annual earnings $137,380
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News headlines: ‘AI exposure’ threatens jobs, wages
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Economists also equate ‘exposure’ with job loss
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ing to the rubric. Although these human 
raters had experience working with con-
temporary LLMs, they do not have diverse 
occupational experience. This limits their 
understanding of O*NET work tasks, oc-
cupational workflows, and occupation-spe-
cific software tools. Future research aims 
to broaden the pool of human raters across 
various occupations to enhance the valida-
tion of these exposure scores.

We then prompted an early GPT-4 model 
to apply a slightly modified version of the 
rubric given to human labelers. We com-
plement the human ratings with GPT-4 
ratings to explore the feasibility of using 
LLMs to aid in social science research, par-
ticularly to scale up processes that might 
otherwise be time-consuming or resource 
intensive. The version given to GPT-4 was 
edited to enhance agreement with human 
ratings across a sample of O*NET task/
occupation pairs. Indeed, small 
changes to the rubric can sub-
stantially affect GPT-4’s labels, 
highlighting the fragility of this 
method in the absence of an al-
ternative validation set (see SM 
section 3.3.2 for additional dis-
cussion of the limitations of this 
approach). Final agreement rates 
across human and GPT-4 ratings 
are visualized at the occupation 
level in fig. S4 and at the task 
level in fig. S7. 

ESTIMATING EXPOSURE
 Our results show LLMs’ relevance 
to approximately 14% of tasks per 
occupation on average (see the 
table). When considering the par-
tial implementation of comple-
mentary software (E1 + 0.5 � E2), 
this figure doubles to 30 to 34%, 
and with full implementation 
(E1 + E2), it climbs to 46 to 55%. 
Using the National Employment 
Matrix data from the BLS, we es-
timate that ~80% of workers are 
in occupations with at least 10% 
of tasks exposed assuming par-
tial implementation of comple-
mentary software (E1 + 0.5 � E2), 
whereas 18.5% of workers have 
more than 50% of their tasks ex-
posed (fig. S2).

Exposure is prevalent in oc-
cupations that involve generat-
ing written text or code, as well 
as those with routine informa-
tion processing tasks. In fig. S8, 
we plot exposure by Job Zone—a 
measure in the O*NET database 
that groups occupations that are 
similar in (i) the level of educa-

tion needed to get a job in the occupation, 
(ii) the amount of related experience re-
quired to do the work, and (iii) the extent 
of on-the-job training needed to do the 
work. The amount of preparation required 
ranges from 3 months (Job Zone 1) to 4 or 
more years (Job Zone 5). Job Zones 4 and 
5 are the most exposed, indicating that oc-
cupations needing “extensive preparation” 
(e.g., lawyers, pharmacists, database ad-
ministrators) are more exposed than those 
with lower entry barriers (e.g., dishwash-
ers, floor sanders). 

Tasks marked E2 indicate that they 
are exposed only by software leveraging 
LLMs and domain-specific scaffolding, 
not by generally available LLMs. Within 
an occupation, on average, the addition 
of domain-specific software exposes an 
additional 32 to 41% of tasks according 
to human and GPT-4 ratings, respectively 

(see occupation-level means in the table). 
This suggests that LLM-enhanced software 
could more than double the share of tasks 
exposed relative to the baseline of LLMs 
alone (mean E1 of 14% of tasks for both an-
notation types).

 Occupational exposure to LLMs are 
shown in terms of the percentage of tasks 
affected (occupational exposure) with spe-
cific exposure levels (E1, E1 + 0.5 � E2, E1 + 
E2) (see the first figure). For instance, hu-
man annotators determined that 1.8, 17.8, 
and 46.2% of occupations are E150, (E1 + 0.5 
� E2)50, and (E1 +E2)50 exposed (e.g., have 
at least 50% of tasks exposed at each level), 
respectively. The vertical gap between E1 
and E1 + E2 on this figure indicates the po-
tential additional exposure from artificial 
intelligence (AI) tools beyond direct LLM 
interactions alone. In general, higher-wage 
occupations are more exposed to LLMs 

than lower-wage occupations 
(see the second figure).

 In exploratory analysis, we 
used GPT-4 to evaluate the auto-
mation potential of tasks using 
an automation-focused rubric. 
These GPT-4 ratings were not 
validated with human ratings.  
This automation rubric (see SM 
section 3.2) rates tasks on the 
basis of the proportion of task 
components that LLM-based 
systems could autonomously 
complete with high quality and 
reliability. It spans five automa-
tion categories, from Full Auto-
mation—tasks fully manageable 
by LLMs without human in-
tervention—to No Automation, 
where LLMs are unable to reli-
ably perform any part of the task 
independently with high quality.

Our exploratory analysis esti-
mates only 1.86% of tasks could 
be fully automated by LLMs plus 
additional software integrations 
without human oversight. Still, 
more than 71% of tasks have at 
least some component that an 
LLM plus additional software 
could plausibly complete with 
high quality (table S1). High LLM 
exposure in occupations cor-
relates with higher automation 
potential, with automation scores 
explaining 55.6% of the task-level 
exposure variance (table S2). This 
suggests that occupations with 
greater automation risk may also 
have higher augmentation poten-
tial (fig. S3). This challenges the 
notion that it may be possible to 
predetermine whether LLMs will 
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(d) Exposure by age.

Figure 7: Exposure to AI by demographic group
Notes: Plot (a) shows the average of standardized occupation-level exposure scores for AI by occupational wage percentile
rank using a locally weighted smoothing regression (bandwidth 0.8 with 100 observations), following Acemoglu and
Autor (2011). Wage percentiles are measured as the employment-weighted percentile rank of an occupation’s mean hourly
wage in the May 2016 Occupational Employment Statistics. Plot (b) is a bar graph showing the exposure score percentile
for AI averaged across all industry-occupation observations, weighted by 2010 total employment in given educational
category. Plot (c) is a binscatter. The x-axis is the percent of workers in an industry-occupation observation reported
female in the 2010 census. Plot (d) is a binscatter. The x-axis is the average age of workers in an industry-occupation
observation in the 2010 census.
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level of variability for the potential of machine 
learning within jobs. Jobs with higher scores 
in “sdSML” ( within-occupation standard 
deviation of SML) have higher potential for 
reorganization.

Machine learning is a very different tech-
nology from earlier types of automation and 
it affects a very different set of tasks. While 
the last waves of automation lead to increase 
inequality and wage polarization as routine cog-
nitive tasks were automated (Autor and Dorn 
2013) it’s not clear that ML will have the same 
effects. The correlation coefficients of SML 
with (log median) wage percentile and wage bill (BLS employment times wage) percentiles are 
very low: −0.14 and 0.10, respectively.

Furthermore, for sdSML, the correlation coef-
ficients with wage and total wage bill percen-
tiles are 0.17 and 0.002. This suggests that the 
next wave of automation and reengineering may 
affect a different part of the labor force than the 
last one. However, it’s important to note that the 

ex ante potential of ML may differ from its ulti-
mate implementation, as other factors come to 
bear. 

Even though SML correlation with wage 
and total wage expenditure percentiles is low, 
the actual implementation of ML technologies 
by managers and integrators may not follow 
the SML rankings. If technological change is 
directed, the implementation of ML by man-
agers and entrepreneurs will be focused on the 
high wage bill tasks with higher SML. 

III. Conclusion

Automation technologies have historically 
been the key driver of increased industrial pro-
ductivity. They have also disrupted employment 
and the wage structure systematically. However, 
our analysis suggests that ML will affect very 

Figure 2.  Task-Level SML with Occupation versus 
Occupational Wage and Wage Bill Percentile (BLS 2016)

Note: Tasks are weighted by importance from the O*NET 
database.

Table 2—Lowest and Highest 5 SML Score 
Occupations

Low SML occupations SML High SML occupations SML

Massage therapists 2.78 Concierges 3.9
Animal scientists 3.09 Mechanical drafters 3.9

Archeologists 3.11 Morticians, undertakers,
 and funeral directors
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Fig. 3. Employment affected by computerisation. Note: The distribution of BLS 2010 occupational employment over the probability of computerisation, along with the share
in low, medium and high probability categories. Note that the total area under all curves is equal to total US employment. For ease of visualisation, the plot was produced by
smoothing employment over a sliding window of width 0.1 (in probability).

social intelligence, are unlikely to become subject to computerisation
in the near future.

The low susceptibility of engineering and science occupations to
computerisation, on the other hand, is largely due to the high degree
of creative intelligence they require. The O*NET tasks of mathe-
maticians, for example, involve “developing new principles and new
relationships between existing mathematical principles to advance
mathematical science” and “conducting research to extend mathe-
matical knowledge in traditional areas, such as algebra, geometry,
probability, and logic.” Hence, while it is evident that computers are
entering the domains of science and engineering, our predictions
implicitly suggest strong complementarities between computers and
labour in creative science and engineering occupations; although it
is possible that computers will fully substitute for workers in these
occupations over the long-run. This is in line with the findings of
Ingram and Neumann (2006), showing a largely persistent increase
in the returns to cognitive abilities since the 1980s. We also note
that the predictions of our model are strikingly in line with the

Table 3
Variable distributions.

Variable Probability of computerisation

Low Medium High

Assisting and caring for others 48±20 41±17 34±10
Persuasion 48±7.1 35±9.8 32±7.8
Negotiation 44±7.6 33±9.3 30±8.9
Social perceptiveness 51±7.9 41±7.4 37±5.5
Fine arts 12±20 3.5±12 1.3±5.5
Originality 51±6.5 35±12 32±5.6
Manual dexterity 22±18 34±15 36±14
Finger dexterity 36±10 39±10 40±10
Cramped work space 19±15 37±26 31±20

Note: Distributions are represented by their mean and standard deviation.

technological trends we observe in the automation of knowledge
work, even within occupational categories. For example, we find that
paralegals and legal assistants – for which computers already substi-
tute – in the high risk category. At the same time, lawyers, which rely
on labour input from legal assistants, are in the low risk category.
Thus, for the work of lawyers to be fully automated, engineering bot-
tlenecks to creative and social intelligence will need to be overcome,
implying that the computerisation of legal research will complement
the work of lawyers in the medium term.

To complete the picture of what recent technological progress is
likely to mean for the future of employment, we plot the average
median wage of occupations by their probability of computerisa-
tion. We do the same for skill level, measured by the fraction of
workers having obtained a bachelor’s degree, or higher educational
attainment, within each occupation. Fig. 4 reveals that both wages
and educational attainment exhibit a strong negative relationship
with the probability of computerisation. We note that this predic-
tion implies a truncation in the current trend towards labour market
polarisation, with growing employment in high and low-wage occu-
pations, accompanied by a hollowing-out of middle-income jobs.
Rather than reducing the demand for middle-income occupations,
which has been the pattern over the past decades, our model predicts
that computerisation will mainly substitute for low-skill and low-
wage jobs in the near future. By contrast, high-skill and high-wage
occupations are the least susceptible to computer capital.

Our findings were robust to the choice of the 70 occupations that
formed our training data. This was confirmed by the experimental
results tabulated in Table A2: a GP classifier trained on half of the
training data was demonstrably able to accurately predict the labels
of the other half, over one hundred different partitions. That these
predictions are accurate for many possible partitions of the training
set suggests that slight modifications to this set are unlikely to lead
to substantially different results on the entire dataset.

Figure 4: AI Exposure by Occupation Wages
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The figure plots a smoothed polynomial regression of the (standardized) measures of AI exposure in each 6-digit SOC occupation against
its rank in the wage distribution. We rank occupations according to their mean hourly wage for 2010-2018, obtained from the Occupational
Employment Statistics.
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This thinking is oversimplified

• Does automation or AI ‘exposure’ → Occupation, job, wages at risk?

1 Capital and labor are usually considered complements (Griliches ’68). Why not here?

2 An occupation or task might be exposed to automation or augmentation or both (Lin ’11;

Acemoglu-Restrepo ’18; Atalay, Phongthiengtham, Sotelo, Tannenbaum ’20; Mann, Püttman ’23; Autor,

Chin-Salomons, Seegmiller 24; Danieli ’24; Kim, Merritt, Peri ’24; Kogan, Papanikolaou, Schmidt,

Seegmiller ’24)

3 Depending on which tasks are automated, automation could diminish or amplify the
demand for human expertise

4
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Defining expertise

• Expertise (dictionary definition)
• Domain-specific knowledge or competency required to accomplish a particular goal

• Expertise (economic relevance)

1 The goal it enables must itself have market value

2 The expertise must be scarce

5
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Expertise and automation: Not just how many tasks but which tasks

Consider an occupation that loses 25% of its tasks to automation

Labor productivity
Expert tasks automated

7
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Expertise and automation: Not just how many tasks but which tasks

Consider an occupation that loses 25% of its tasks to automation

Expert tasks automated
Labor productivity
Average expertise

Employment
Wages

8
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Expertise and automation: Not just how many tasks but which tasks

Consider an occupation that loses 25% of its tasks to automation

Expert tasks automated
↑ Labor productivity
↓ Average expertise
↑ Employment

→ or ↓ Wages

9
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Expertise and automation: Not just how many tasks but which tasks

Consider an occupation that loses 25% of its tasks to automation

Expert tasks automated Inexpert tasks automated
↑ Labor productivity ↑
↓ Average expertise ↑
↑ Employment → or ↓

→ or ↓ Wages ↑

10

© David Autor and Neil Thompson, 2024



When expert tasks are eliminated — Free entry and angry incubments

11
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Wage and employment change across all occupations
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Taxi drivers: Expertise, wages fell, employment rose

+8%
+12%

+16%

+4%

+13%

+20%

Taxi and Chauffeur

Others

0
10

20
30

40
Cu

m
ul

at
iv

e 
ch

an
ge

 in
 h

ou
rly

 w
ag

es
 (l

og
 p

ts
)

1980 1990 2000 2010 2020

Cumulative Wage Change

+9%

+40%

+249%

+24%
+42% +49%

Taxi and Chauffeur

Others

-1
00

-5
0

0
50

10
0

15
0

Cu
m

ul
at

iv
e 

ch
an

ge
 in

 e
m

pl
oy

m
en

t (
lo

g 
pt

s)

1980 1990 2000 2010 2020

Cumulative Employment Change

13

© David Autor and Neil Thompson, 2024



Proofreaders: Expertise upgraded, wages rose, employment fell
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Agenda

1 Conceptual framework
Foundations
A model of expertise, automation, and labor arbitrage

2 The measurement challenge
Measuring expertise
Measuring tasks removed and added

3 Main evidence: Changes in expertise demands, earnings and employment
Overall (net) changes in expertise requirements
Task removal and addition → Expertise downgrading and upgrading
Is it ‘more expertise’—or just ‘more tasks’

4 Implications and next steps
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Expertise and automation: Foundations

1 The tasks comprising an occupation are indivisible → All must be performed
• Automating one set of tasks does not eliminate the need for the others (Acemoglu-Autor ’11)

2 Accomplishing a specific task requires task-specific expertise
• Air traffic controllers can be crossing guards—but the reverse is not true

3 Automation displaces labor from some expert tasks
• Foundational notion in Task models (Autor Levy Murnane ’03; Acemoglu Autor ’11; Acemoglu

Restrepo ’18, ’22)

4 All occupations also have some generic tasks
• Can be done by all workers but are not subject to automation
• Generic tasks may require physical dexterity, multi-sensory interactions, common sense

17
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Model — Workers and expertise supply

Workers

• Each worker has one efficiency unit labor ℓi = 1 that she can supply to one occupation

• Workers have different levels of expertise ji ∈ [0, 1]
• A worker of expertise ji can perform any task j

′
≤ ji

• All workers can also perform generic tasks

• Workers choose their occupation to maximize wages
• They cannot subdivide ℓi across occupations

• There is a mass of workers uniformly distributed across all expertise levels
• Expertise is not exogenously scarce—same number of experts as non-experts
• But, intuitively, there are always more potential crossing-guards than air traffic controllers
• Formally, expertise is upwardly non-fungible

19
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Expertise be like... Russian stacking dolls

20
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Model — Occupations and expertise demands

Occupations

• An occupation is defined by the tasks it employs
• Occupation j requires expertise in tasks [φ, j]
• Tasks are ordered by increasing expertise

• Each occupation has both generic and expert tasks
• Generic tasks: A task interval [0,φ), requires no expertise but cannot be automated
• Remaining tasks are expert tasks, which can potentially be automated

• Indivisibility: Worker must be perform all non-automated tasks in her occupation
• Air-traffic controller cannot ‘outsource’ speaking to pilots to less expert colleague

21
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Model — Generic tasks, expert tasks, and automation

A worker in occ j produce y j by completing continuum of tasks x ∈ [0, j]

• Generic versus expert tasks
• Tasks x ∈ [0,φ) are generic: Every worker can do them and they can be done only by labor
• Tasks x ∈ [φ, 1] require corresponding expertise but can potentially be automated

• State of automation is indexed by κ ∈ [φ, 1]
• Automation always raises output net of cost → Firms automate tasks if feasible
• Once an expert task is automated, it no longer requires expertise
• When all expert tasks in an occupation are automated, any worker can do that occupation

• Task continuum in an occupation has three segments

22
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Model — Worker-level production function is Cobb-Douglas

Output of worker i supplying ℓi to occ j:

y j = j exp
§

1
j

�

∫ φ

0

ln
�

ℓ j(x)
�

d x
︸ ︷︷ ︸

generic

+

∫ κ j

φ

ln
� k j

κ j −φ

�

d x

︸ ︷︷ ︸

automated

+

∫ j

κ j

ln
�

ℓ j(x)
�

d x

︸ ︷︷ ︸

expert

�ª

(1)

• Firm’s optimization problem details

• Seeks to maximize y j (assume infinitesimal profits per unit of y j)
• Employs at most one machine per automated task (k j ≤ κ j −φ)
• Efficiently distributes up to one unit of labor across non-automated tasks

(ℓ j(x) s.t.
∫ 1

0 ℓ j(x)d x ≤ 1)
• Automates up to min{κ, j} tasks (κ j ≤min{ j,κ})

• Labor and capital are both paid their marginal products details

23

© David Autor and Neil Thompson, 2024



Model – Aggregate production and the price index

Occupational outputs are combined into aggregate good

• Occupation-level production is Yj := L j y j where L j is the density of workers employed
in occupation j
• Aggregate good Y is produced according to Dixit-Stiglitz CES production function:

Y =
�

∫ 1

0

Y
σ−1
σ

j d j
�

σ
σ−1

(2)

where σ > 1 is the elasticity of substitution
• Price index for Y will be:

P =
�

∫ 1

0

p1−σ
j d j
�

1
1−σ

(3)

• Real occupational wage, prior to labor arbitrage, is w̃ j =
w j
P

details
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Model — Labor arbitrage, and the supply of inexpert and expert labor

Workers arbitrage wage diffs, constrained by own expertise endowments

• Expertise replacement
• More expert workers j can always flow into less expert occupations j′ < j
• If all expert tasks in an occ are automated, occ becomes generic → open to any worker
• As occs go from expert to generic, their wages cannot exceed that in any expert occ, j > κ
• Cause — Inexpert labor is elastically supplied

• Expertise augmentation
• Less expert workers j′ can never flow into more expert, non-automated tasks where j′ > j
• As κ rises, real value of more expert occs rises
• Relative and real wages of remaining experts rise
• Cause — Expert labor supply is inelastically supplied
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Automation first raises productivity in low-expertise occs, but ultimately
raises it by more in high-expertise occs

26
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Without expertise mobility: Wage growth by expertise is non-monotone in
automation, reflecting productivity growth: Low, mid, high-expertise

27
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Expertise mobility: Wage diffs arbitraged between high expertise vs
mid-expertise occs (top); and between all fully generic occs (bottom)

28
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Primary implications taken to the data

1 Expert work commands higher wages than generic work
• Even within education groups
• Even within white collar, blue collar, and service occupations

2 Changes in set of tasks in an occupation may raise or lower expertise demands
• Adding tasks may lower expertise demands — if added tasks are inexpert
• Removing tasks may raise expertise — if removed tasks are inexpert

3 Change in occ’s expertise demands will have opposing effects on wages, employment
• Increase in expertise demand will raise wages, reduce employment (relative)
• Fall in expertise demand will reduce wages, raise employment (relative)
• Labor arbitrage is key: Inexpert labor supply is elastic; Expert labor supply is inelastic

4 What matters: Not only quantity of tasks added/removed but expertise of those tasks
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4 Implications and next steps
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Empirical approach

What we will measure

1 How much expertise a job requires

2 Which tasks have been removed from and added to an occupation

3 Quantify change in expertise requirements due to task removal and addition

4 Distinguish quantity of tasks added/removed from the expertise of these tasks

5 Wage and employment changes by occupation 1980 – 2018
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Measuring expertise by harnessing Zipf’s Law of Abbrevation

Zipf’s Law of Abbreviation (Zipf 1945)—known in linguistics as the Brevity Law
• Linguistic regularity: frequently used words tend to be shorter than rare words
• Known in neuroscience as the Efficient Coding Hypothesis (Barlow 1961)

• Empirically verified for almost a thousand languages of 80 different linguistic families

• Related to the principle of least effort
• Language finds path of least resistance
• Trades off the cost of verbalizing against the benefit of maximizing transmission success
• Specialized words—such as those used by experts—will be longer, less-frequent than words

denoting generic, common tasks

• Relevance to measuring expertise demands of job tasks
• Familiar terms are short and simple → Non-expert
• Job tasks characterized by rare, complex words → (More) Expert
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Measuring expertise

Calculate Dale-Chall readability to measure expertise requirements of jobs

• Dale-Chall score is numeric gauge of the comprehension difficulty of a corpus of text
(Dale & Chall ’45, ’95)

• Calculate Dale-Chall Complexity as

DCC ≡ 1−
N dc

words

Nwords

• N dc
words is N words found in the Dale-Chall vocabulary, Nwords is the total word count
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Explainer: The Dale-Chall readability score

No Yes

Edgar Dale Jeanne Chall
35
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Measuring expertise: Job task descriptions from DOT 1977, O*Net 2018

Ingredients for measuring Dale-Chall task scores

1 Textual job descriptions from the 1977 Dictionary of Occupational Titles, limited to
≈ 4,000 titles detected in National Academy of Sciences, 1984

2 Textual job descriptions from the 2018 O*NET, linked to 1977 DOT
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Measuring expertise – Examples

Examples of high expertise (high DCC) job tasks
• Initiates promotions within department (Production supervisors or foremen, 1977, DCC = 100%)

• Disassembles unit to locate defects (Mechanics and repairers, 1977, DCC = 80%)

• Operate Magnetic Resonance Imaging (MRI) scanners (Radiologic technologists and technicians,

2018, DCC = 100%)

• Install network software, including security or firewall software (Computer systems analysts, 2018,

DCC = 88%)

Examples of low expertise (low DCC) job tasks
• Empties trash collecting box or bag at end of each shift (Janitors, 1977, DCC = 9%)

• Print and make copies of work (Typists, 2018, DCC = 0%)

• Butters bread and places meat or filling and garnish, such as chopped or sliced onion and
lettuce, between bread slices (Food preparation workers, 1977, DCC = 5%)

• Announce stops to passengers (Bus drivers, 2018, DCC = 0%) 37
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Linking to wage and employment changes by occupation, 1980 – 2018

Source for employment and earnings data

• Harmonized US Census employment and earnings data for 1980, 2000, 2018 from
Autor Chin Salomons Seegmiller ’24

• 306 consistent, comprehensive occupations (occ1990dd18)

• We also use the ACSS ’24 measure of the addition of new titles to occupations (“new
work”), which builds on (Lin ’11), to validate our new task measure
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Expertise and log wages by occupation, 1980 and 2018

ln(Wage) j t = αt + βtDCC j t + ε j t
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Expertise and log wages by occupation, conditional on education

ln(Wage) j t = αt + βtDCC j t +
4
∑

g=1

θg tShareEdu j g t + ε j t
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High and low expertise occupations by broad category

Low Expertise High Expertise
Occupation DCC Wage (hr) Occupation DCC Wage (hr) diff

Services: Personal Food preparation workers 26% $9.26 Recreation and fitness workers 44% $13.53 46%

Services: Cleaning and protective Housekeepers and cleaners 26% $9.68 Cleaning and building service supervisors 45% $16.19 67%

Farm and mining Farm workers and managers 29% $10.04 Inspectors of agricultural products 46% $16.54 65%

Sales minus financial/advertising Cashiers 25% $10.06 Sales promoters and models 38% $14.27 42%

Services: Health Health and nursing aides 35% $11.43 Dental Assistants 57% $13.14 15%

Clerical and administrative support Mail clerks, outside of post office 24% $12.98 Insurance adjusters 49% $18.80 45%

Transportation Bus drivers 26% $14.87 Vehicle transportation supervisors 42% $19.26 30%

Production and operative Butchers and meat cutters 27% $15.08 Production supervisors or foremen 48% $21.74 44%

Technicians, fire, and police Licensed practical nurses 37% $15.21 Engineering technicians 51% $21.91 44%

Construction and mechanics Locksmiths and safe repairers 24% $17.51 Construction supervisors 48% $23.24 33%

Managers and executives Purchasing agents of farm products 39% $20.46 HR and labor relations managers 52% $27.04 32%

Professionals Advertising and related sales jobs 37% $23.84 Economists and market researchers 50% $29.85 25%

41

© David Autor and Neil Thompson, 2024



High and low expertise occupations by broad category—A few examples

Low Expertise High Expertise

Occupation DCC Wage (hr) Occupation DCC Wage (hr) diff

Services Housekeepers
and cleaners

26% $9.68 Cleaning
and building
supervisors

45% $16.19 67%

Clerical Mail clerks,
outside of
post office

24% $12.98 Insurance
adjusters

49% $18.80 45%

Technicians Licensed
practical
nurses

37% $15.21 Engineering
technicians

51% $21.91 44%

Professionals Advertising
and related
sales jobs

37% $23.84 Economists
and market
researchers

50% $29.85 25%
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Expertise/wage scatterplots by broad occupation
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Expertise/wage scatterplots by broad occupation
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How we measure tasks removed and added

1 Encode tasks: Transform each task
description to 1, 536 dimensional vector
(OpenAI text-embedding-3-small)

2 Identify nearest tasks: For each task in
1977 (2018), identify the nearest task
from 2018 (1977)

3 Identify unmatched tasks:
• Found in 1977 not 2018→Task removed
• Found in 2018 not 1977→Task added

Stylized representation of task matching, with 1, 536-dimensional
neighbourhood reduced to 2-d using t-SNE
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Tasks removed and added: File Clerk occupation, 1977–2018
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How we calculate changes in expertise

1 Measure share of tasks added and removed, 1980–2018

∆τadd, ∆τremove

∆τnet =∆τadd +∆τremove

2 Calculate the change in expertise due to task addition

∆DCCadd =∆τadd × (DCC2018,added −DCC1980)

3 Calculate the change in expertise due to task removal

∆DCCremove =∆τremove × (DCC1980 −DCC1980,removed)

4 Calculate the net change in expertise due to task addition and removal

∆DCCnet =∆DCCadd +∆DCCremove 48

© David Autor and Neil Thompson, 2024



Consider tasks removed and retained by Typists, 1977 – 2018

Expertise downgrading
Tasks Removed

• Types message heard through earphones
• Reads chart prepared by dictator to

determine length of message

• Presses button to stop tape or to mark
end of tape section

• Pastes messages received on tape on
paper forms

• Reads incoming messages to detect
errors and presses lever to stop
transcription

Tasks Retained

• Types letters, reports, stencils, forms,
addresses

• Compiles data and operates typewriter
in performance of routine clerical duties
to maintain business records and reports

• May operate duplicating machines to
reproduce copy

• May sort mail

49
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Consider tasks removed and retained by Statistical Clerks, 1977 – 2018

Expertise upgrading
Tasks Removed

• Compiles names, addresses, vital
statistics, and other facts or opinions
from business subscribers or persons in
communities or cities

• Records figures shown on dial and
measuring wheels of planimeter at
beginning and ending of tracing and
subtracts figures from each other to
determine acreage

• Posts and files charts

Tasks Retained

• Applies standardized mathematical
formulas, principles, and methodology
to technological problems... in relation
to specific industrial and research
objectives

• Confers with professional, scientific, and
engineering personnel to plan projects

• Analyzes processed data to detect errors

50
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Task subtraction is concentrated in blue collar jobs; addition in white collar

Transportation

Sales minus financial and advertising

Farm and mining

Services: cleaning and protective

Production and operative

Services: health

Construction and mechanics

Services: personal

Administrative support

Technicians, fire and police

Managers and executives

Professionals including medical

1000 100 10 0 10 100 1000
Count of tasks added or removed (log scale)

Tasks Subtracted Tasks Added

Ordered by tasks added

Count of tasks added and removed by occupation group
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Accountants and auditors

Other financial specialists

Architects

Physicians

Veterinarians

Registered nurses

Subject instructors, college

Primary school teachers

Dancers

Health technologists and technicians, n.e.c.

Computer software developers

Secretaries and stenographers

Statistical clerks

Automobile mechanics and repairers
Bus drivers

Taxi cab drivers and chauffeurs
Management support occupations

Art performers
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0 10% 20% 30% 40%
New tasks added (%)

Slope: 6.75 (1.83), Partial R2: 0.07, N: 534

New titles added and new tasks added

ln(New Titles) j t = α+ β∆add, j t + εt j
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Agenda
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4 Implications and next steps
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table

Change in occupational wage and ∆DCC (expertise), 1980–2018

∆ ln(Wage)1980−2018, j = α+ β∆DCCnet, j + ε j
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Do occupational wage changes reflect changes in expertise demands?

Calculate expected change in occ’s wages due to measured compositional shifts

• Estimate cross-section log wage regression in each Census/ACS year—saturated for
sex, race, ethnicity, education level, all interacted w/ age quadratic

wi, j t = αt + X i jβt + εi j t

• Calculate predicted log wage ŵi j t = E
�

wi j t |X i j , t
�

for each worker

• Collapse to occupation-year cells ¯̂w j t

• Wage components are
• ∆ ¯̂w j t is the change in mean log wages in occupation j attributable to changes in

education, experience, and demographics of workers
• ∆ŵ j t −∆ ¯̂w j t is observed wage change not attributable to ∆ worker composition

• Finally, regress change in expected wage on change in expertise requirements,
∆DCCnet, j ∆ ¯̂w jτ = α0 + β0∆DCCnet, jτ + e j t 57
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Removing inexpert tasks and adding expert tasks: Both raise wages

∆ ln(Wage)1980−2018, j = α+ β∆DCCremove/add, j + ε j
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Removing inexpert tasks and adding expert tasks: Both raise skill

∆ ln(E[Wage])1980−2018, j = α+ β∆DCCremove/add, j + ε j
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table

Removing inexpert tasks and adding expert tasks: Both lower employment
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table

How many tasks or which tasks: Wage regressions

∆ ln(Wage)1980−2018, j = α+ β1∆DCCnet, j + β2∆τnet, j + ε j
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table

How many tasks or which tasks: Skill regressions

∆ ln(E[Wage])1980−2018, j = α+ β1∆DCCnet, j + β2∆τnet, j + ε j
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How many tasks or which tasks: Employment regressions

∆ ln(Emp)1980−2018, j = α+ β1∆DCCnet, j + β2∆τnet, j + ε j
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Does automation replace experts or augment expertise? The answer is yes

1 Automation both replaces and augments expertise
• Relevant questions is not how many tasks but which tasks

2 Focus on ‘exposure’ to automation/AI is misplaced
• Why don’t grocery cashiers make high wages given huge productivity gains?
• Why doesn’t everyone apply to pediatric oncology jobs, given the high pay?
• One-way fungibility of expertise is central to the answer

3 Most theories of job ‘exposure’ fail to predict the past
• They are therefore ill-equipped to predict the AI future
• Applying the expertise approach, we hope to do better
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Model Appendix — Production function algebra

Firm optimization

• Due to Cobb-Douglas form, worker/firm will distribute labor ℓ j equally across

non-automated tasks, i.e. ℓ j(x) =
l j

j+φ−κ j
,∀x ∈ [0,φ]∪ (κ j , 1] and

ℓ j(x) = 0,∀x ∈ (φ,κ j] for some l j ≤ 1.
• Tech-monopolist sells k j and can perfectly price-discriminate between occupations

• Labor and capital paid their marginal products:

w j

p j
=

dy j

dl j
=

j +φ − κ j

j

y j

l j
(4)

r j

p j
=

dy j

dk j
=
κ j −φ

j

y j

k j
(5)

• Firms will choose l j = 1 and k j = κ j −φ since y j increases in l j and k j.© David Autor and Neil Thompson, 2024



Model Appendix — Production function algebra

Simplifications of worker-level production and wages after firm choices
• y j is monotone increasing in κ j (since π > φ−1). Firms will choose κ j =min{ j,κ}.
• worker-level production and wages simplify to:

y j = j
�

1
j +φ −κ j

�

j+φ−κ j
j

π
κ j−φ

j (6)

w j

p j
= [( j +φ −κ j)π]

κ j−φ
j (7)
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Model Appendix — Real wages before arbitrage

Factors in (before arbitrage) real wage expression reflect channels of operation

w j

P
=

p j

P

w j

p j
= Y
− 1
σ

j

�

∫ 1

0

Y
σ−1
σ

i di
�

1
σ−1 w j

p j
(8)

• w j
P is non-monotone in κ: Labor-share falls, productivity increases

• Y−σj decreases in κ (until κ= j): Occupational output rises, lowering output price
• But occupational revenue (price × quantity) always increases with output since σ > 1

•
�∫ 1

0 Y
σ−1
σ

i di
�

1
σ−1 increases in automation κ: Economic growth
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Model Appendix — Simulation procedure

Finite occupations for simulations

• For computational reasons we replace the continuous CES aggregate production
function with a discrete one with occupations j ∈ Ω ⊆ [0, 1] and J := |Ω|<∞:

Y =
1
J

�

∑

i∈Ω
Y
σ−1
σ

i

�
σ
σ−1

(9)

• Denote by L0
j the mass of workers of type j. We let

∑

j∈Ω L j = 1.
• We simulate J occupations uniformly distributed on [0,1] and let L0

j be uniform on
[0, 1] as well, i.e. L0

j = 1/J ,∀ j ∈ Ω.
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Model Appendix — Simulation procedure

Labor arbitrage algorithm

• We say wages are equalized between occupations j and i if L j/Li is set s.t. wages are
equal in both occupations. Let j1 :=min{Ω∩ (κ, 1]}, j2 :=min{Ω∩ ( j1, 1]}, etc. and
do the following steps:
1 Wages between fully automated occupations (all j ∈ Ω∩ [0,κ]) are equalized.
2 If wages in occupation j1 are lower than in fully automated occupations, wages between all

j ∈ Ω∩ [0, j1] are equalized.
3 If wages in occupation j2 are lower than in occupation j1, wages are equalized. If wages in

j1 are now lower than in fully automated occupations, wages between all j ∈ Ω∩ [0, j2] are
equalized.

4 If wages in occupation j3 are lower than in occupation j2, wages are equalized. If wages in
j2 are now lower than in j1, wages are equalized between j1, j2 & j3. If wages in j1 are now
lower than in fully automated occupations, wages between all j ∈ Ω∩ [0, j3] are equalized.

5 ... © David Autor and Neil Thompson, 2024



Model Appendix — Key condition governing labor arbitrage

Algorithm relies on ratio L j/Li s.t. wages are equal in occupations j & i

w j

P
≥

wi

P
(10)

⇐⇒
w j

wi
=
� L j y j

Li yi

�− 1
σ
�w j/p j

wi/pi

�

≥ 1 (11)

⇐⇒
L j

Li
≤

yi

y j

�w j/p j

wi/pi

�σ

(12)
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Results Appendix — Main evidence table

Dependent Variable = ∆ log Wage, 80-18 decadalized

(1) (2) (3) (4)

DCCnet 0.69*** 0.61**
(0.20) (0.20)

DCCremove 0.63**
(0.20)

DCCadd 1.24
(0.77)

Tasknet 0.08**
(0.03)

N 305 306 305 305
R2 0.04 0.03 0.01 0.07© David Autor and Neil Thompson, 2024
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Results Appendix — Main evidence table

Dependent Variable = ∆ log Emp, 80-18 decadalized

(1) (2) (3) (4)

DCCnet -1.88* -2.31**
(0.86) (0.85)

DCCremove -1.89*
(0.88)

DCCadd -0.93
(3.30)

Tasknet 0.45***
(0.11)

N 305 306 305 305
R2 0.02 0.01 0.00 0.06
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