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The Race between Man and Machine: Implications of 
Technology for Growth, Factor Shares, and Employment†

By Daron Acemoglu and Pascual Restrepo*

We examine the concerns that new technologies will render labor 
redundant in a framework in which tasks previously performed 
by labor can be automated and new versions of existing tasks, in 
which labor has a comparative advantage, can be created. In a 
static  version where capital is fixed and technology is exogenous, 
 automation reduces employment and the labor share, and may even 
reduce wages, while the creation of new tasks has the opposite effects. 
Our full model endogenizes capital accumulation and the direction 
of research toward automation and the creation of new tasks. If the 
long-run rental rate of capital relative to the wage is sufficiently low, 
the long-run equilibrium involves automation of all tasks. Otherwise, 
there exists a stable balanced growth path in which the two types 
of innovations go hand-in-hand. Stability is a  consequence of the 
fact that automation reduces the cost of  producing using labor, and 
thus discourages further automation and encourages the  creation 
of new tasks. In an extension with heterogeneous skills, we show 
that  inequality increases during transitions driven both by faster 
 automation and the introduction of new tasks, and characterize 
the conditions under which inequality stabilizes in the long run. 
(JEL D63, E22, E23, E24, J24, O33, O41)

The accelerated automation of tasks performed by labor raises concerns that new 
technologies will make labor redundant (e.g., Brynjolfsson and McAfee 2014; Akst 
2013; Autor 2015). The recent declines in the labor share in national income and 
the employment to population ratio in the United States (e.g., Karabarbounis and 
Neiman 2014; Oberfield and Raval 2014) are often interpreted as  evidence for the 
claims that as digital technologies, robotics, and artificial intelligence  penetrate the 
economy, workers will find it increasingly difficult to compete against machines, 
and their compensation will experience a relative or even absolute decline.  
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Yet,  we  lack a comprehensive framework incorporating such effects, as well as 
potential countervailing forces.

The need for such a framework stems not only from the importance of 
 understanding how and when automation will transform the labor market, but also 
from the fact that similar claims have been made, but have not always come true, 
about previous waves of new technologies. Keynes famously foresaw the steady 
increase in per capita income during the twentieth century from the introduction 
of new technologies, but incorrectly predicted that this would create widespread 
technological unemployment as machines replaced human labor (Keynes  1930). 
In 1965, economic historian Robert Heilbroner confidently stated that “as machines 
continue to invade society, duplicating greater and greater numbers of social tasks, 
it is human labor itself—at least, as we now think of ‘labor’— that is gradually 
 rendered redundant” (quoted in Akst 2014, p. 2). Wassily Leontief was equally pes-
simistic about the  implications of new machines. By drawing an analogy with the 
technologies of the early twentieth century that made horses redundant, in an inter-
view1 he speculated that “Labor will become less and less important... More and 
more workers will be replaced by machines. I do not see that new industries can 
employ everybody who wants a job.”

This paper is a first step in developing a conceptual framework to study how 
machines replace human labor and why this might (or might not) lead to lower 
employment and stagnant wages. Our main conceptual innovation is to propose a 
framework in which tasks previously performed by labor are automated, while at 
the same time other new technologies complement labor :  specifically, in our model 
this takes the form of the introduction of new tasks in which labor has a comparative 
advantage. Herein lies our answer to Leontief’s analogy: the difference between 
human labor and horses is that humans have a comparative advantage in new and 
more complex tasks. Horses did not. If this comparative advantage is significant and 
the creation of new tasks continues, employment and the labor share can remain 
stable in the long run even in the face of rapid automation.

The importance of new tasks is well illustrated by the technological and 
 organizational changes during the Second Industrial Revolution, which not only 
involved the replacement of the stagecoach by the railroad, sailboats by steamboats, 
and of manual dock workers by cranes, but also the creation of new labor-intensive 
tasks. These tasks generated jobs for engineers, machinists, repairmen, conductors, 
back-office workers, and managers involved with the introduction and operation of 
new technologies (e.g., Landes 1969; Chandler 1977; and Mokyr 1990).

Today, as industrial robots, digital technologies, computer-controlled machines, 
and artificial intelligence replace labor, we are again witnessing the emergence of 
new tasks ranging from engineering and programming functions to those performed 
by audio-visual specialists, executive assistants, data administrators and analysts, 
meeting planners, and social workers. Indeed, during the last 35 years, new tasks 
and new job titles have accounted for a large fraction of US employment growth. 
To document this fact, we use data from Lin (2011) to measure the share of new job 
titles,  jobs in which workers perform tasks that are different from tasks in previously 

1 Charlotte Curtis, “Machines vs. Workers,” The New York Times, February 8, 1983.
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existing jobs , within each occupational category. In 2000, about 70 percent of com-
puter software developers (an occupational category employing one million people 
at the time) held new job titles. Similarly, in 1990 “radiology technician” and in 1980 
“management analyst” were new job titles. Figure 1 shows that occupations with 
10 percentage points more new job titles (which is approximately the  sample  average 
in 1980) experienced 0.41 percent faster employment growth between 1980 and 
2015. This estimate implies that about 60 percent of the 50 million or so jobs added 
during this 35-year period are associated with the additional employment growth in 
occupations with new job titles (relative to occupations with no new job titles).2

We start with a static model in which capital is fixed and technology is 
 exogenous. There are two types of technological changes: automation allows firms 
to  substitute capital for tasks previously performed by labor, while the creation 
of new tasks enables the replacement of old tasks by new variants in which labor 
has a higher  productivity. Our static model provides a rich but tractable frame-
work that  clarifies how automation and the creation of new tasks shape the pro-
duction  possibilities of the economy and determine factor prices, factor shares in 
national income, and employment. Automation always reduces the labor share and 
 employment, and may even reduce wages.3 Conversely, the creation of new tasks 

2 The relationship shown in Figure 1 controls for the demographic composition of employment in the  occupation 
in 1980. In online Appendix B, we show that the same relationship holds between the share of new job titles in 
1990 (in 2000) and employment growth from 1990 to 2015 (from 2000 to 2015), and that these patterns are  present 
 without any controls and when we control for average education in the occupation and the structural changes 
in the US  economy as well. The data for 1980, 1990 and 2000 are from the US Census. The data for 2015 are 
from the American Community Survey. Additional information on the data and our sample is provided in online  
Appendix B. 

3 The effects of automation in our model contrast with the implications of factor-augmenting technologies. 
As we discuss in greater detail later and in particular in footnote 19, the effects of factor-augmenting technologies 
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increases wages,  employment, and the labor share. These comparative statics follow 
because factor prices are determined by the range of tasks performed by capital and 
labor, and shifts in technology alter the range of tasks performed by each factor 
(see also Acemoglu and Autor 2011).

We then embed this framework in a dynamic economy in which capital 
 accumulation is endogenous, and we characterize restrictions under which the 
model delivers balanced growth with automation and creation of new tasks ,  which 
we take to be a good approximation to economic growth in the United States and 
the United Kingdom over the last two centuries. The key restrictions are that there 
is exponential productivity growth from the creation of new tasks and that the two 
types of technological changes  (automation and the creation of new tasks) advance 
at equal rates. A critical difference from our static model is that capital  accumulation 
responds to permanent shifts in technology in order to keep the interest rate 
and hence the rental rate of capital constant. As a result, the dynamic effects of 
 technology on factor prices depend on the response of capital  accumulation as well. 
The response of capital ensures that the productivity gains from both  automation and 
the  introduction of new tasks fully accrue to labor (the relatively inelastic  factor). 
Although the real wage in the long run increases because of this productivity effect, 
automation still reduces the labor share and employment.

Our full model endogenizes the rates of improvement of these two types of 
 technologies by marrying our task-based framework with a directed technological 
change setup. This full version of the model remains tractable and allows a complete 
characterization of balanced growth paths. If the long-run rental rate of capital is very 
low relative to the wage, there will not be sufficient incentives to create new tasks, 
and the long-run equilibrium involves full automation,  akin to Leontief’s “ horse 
equilibrium.” Otherwise, the long-run equilibrium involves  balanced growth based 
on equal advancement of the two types of technologies. Under natural  assumptions, 
this (interior) balanced growth path is stable, so that when  automation runs ahead 
of the creation of new tasks, market forces induce a slowdown in  subsequent 
 automation and more rapid countervailing advances in the creation of new tasks. 
This stability result highlights a crucial new force: a wave of automation pushes 
down the  effective cost of producing with labor, discouraging further efforts to 
 automate additional tasks and encouraging the creation of new tasks.

The stability of the balanced growth path implies that periods in which  automation 
runs ahead of the creation of new tasks tend to trigger self-correcting forces, and 
as a result, the labor share and employment stabilize and could return to their 
 initial  levels. Whether this is the case depends on the reason why automation paced 
ahead in the first place. If this is caused by the random arrival of a series of automa-
tion technologies, the long-run equilibrium takes us back to the same initial levels 
of employment and labor share. If, on the other hand, automation surges because of 
a change in the innovation possibilities frontier (making automation easier relative 
to the creation of new tasks), the economy will tend toward a new balanced growth 

on the labor share depend on the elasticity of substitution between capital and labor. In addition,  capital-augmenting 
 technological improvements always increase the wage, while labor-augmenting ones also increase the wage 
 provided that the elasticity of substitution between capital and labor is greater than the capital share in national 
income. This contrast underscores that it would be misleading to think of automation in terms of factor-augmenting 
technologies. See Acemoglu and Restrepo (2018).
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path with lower levels of employment and labor share. In neither case does rapid 
automation necessarily bring about the demise of labor.4

We also consider three extensions of our model. First, we introduce heterogeneity 
in skills, and assume that skilled labor has a comparative advantage in new tasks, 
which we view as a natural assumption.5 Because of this pattern of comparative 
advantage, automation directly takes jobs away from unskilled labor and increases 
inequality, while new tasks directly benefit skilled workers and at first increase 
inequality as well. Over the long run, the standardization of new tasks help low-skill 
workers. We characterizes the conditions under which standardization is sufficient 
to restore stable inequality in the long run. This extension formalizes the idea that 
both automation and the creation of new tasks increase inequality in the short run 
but standardization limits the increase in inequality in the long run.

Our second extension modifies our baseline patent structure and reintroduces the 
creative destruction of the profits of previous innovators, which is absent in our main 
model, though it is often assumed in the endogenous growth literature. The results in 
this case are similar, but the conditions for uniqueness and stability of the balanced 
growth path are more demanding.

Finally, we study the efficiency properties of the process of automation and 
creation of new technologies, and point to a new source of inefficiency leading to 
excessive automation: when the wage rate is above the opportunity cost of labor 
(due to labor market frictions), firms will choose automation to save on labor costs, 
while the social planner, taking into account the lower opportunity cost of labor, 
would have chosen less automation.

Our paper can be viewed as a combination of task-based models of the labor 
 market with directed technological change models.6 Task-based models have been 
 developed both in the economic growth and labor literatures, dating back at least to 
Roy’s (1951) seminal work. The first important recent contribution, Zeira (1998), 
proposed a model of economic growth based on capital-labor  substitution. 
Zeira’s model is a special case of our framework. Acemoglu and Zilibotti (2001) 
 developed a simple task-based model with endogenous technology and applied it 
to the study of productivity differences across countries, illustrating the  potential 
 mismatch between new technologies and the skills of developing economies 
(see also Zeira 2006; Acemoglu 2010). Autor, Levy, and Murnane (2003) suggested 
that the increase in inequality in the US labor market reflects the automation and 
 computerization of routine tasks.7 Our static model is most similar to Acemoglu 
and Autor (2011). Our full framework extends this model not only because of the 
dynamic  equilibrium  incorporating capital accumulation and directed technological 
change, but also because tasks are combined with a general elasticity of substitution, 

4 Yet, it is also possible that some changes in parameters shift us away from the region of stability to the full 
automation equilibrium. 

5 This assumption builds on Schultz (1975). See also Greenwood and Yorukoglu (1997); Caselli (1999); Galor 
and Moav (2000); Acemoglu, Gancia, and Zilibotti (2012); and Beaudry, Green, and Sand (2016). 

6 On directed technological change and related models, see Acemoglu (1998, 2002, 2003, 2007); Kiley (1999); 
Caselli and Coleman (2006); Thoenig and Verdier (2003); and Gancia, Müller, and Zilibotti (2013). 

7 Acemoglu and Autor (2011); Autor and Dorn (2013); Jaimovich and Siu (2014); Foote and Ryan (2015); 
Burstein, Morales, and Vogel (2014); and Burstein and Vogel (2017) provide various pieces of empirical evidence 
and quantitative evaluations on the importance of the endogenous allocation of tasks to factors in recent labor 
market dynamics. 
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and because the equilibrium  allocation of tasks depends both on factor prices and 
the state of  technology.8

Three papers from the economic growth literature that are related to our work 
are Acemoglu (2003), Jones (2005), and Hémous and Olsen (2016). The first 
two papers develop growth models in which the aggregate production  function is 
endogenous and, in the long run, adapts to make balanced growth  possible. In Jones 
(2005), this occurs because of endogenous choices about different  combinations 
of  activities/ technologies. In Acemoglu (2003), this long-run behavior is a 
 consequence of directed technological change in a model of factor-augmenting 
technologies. Our  task-based framework here is a significant departure from this 
model,  especially since it enables us to address questions related to automation, its 
impact on factor prices and its endogenous evolution. In addition, our  framework 
provides a more robust economic force ensuring the stability of the balanced growth 
path: while in models with  factor-augmenting technologies stability requires an 
elasticity of  substitution between capital and labor that is less than 1 (so that the 
more  abundant factor commands a lower share of national income), we do not need 
such a condition in this framework.9 Hémous and Olsen (2016) propose a model 
of  automation and horizontal innovation with endogenous technology, and use it 
to study the  consequences of different types of technologies on inequality. High 
wages (in their model for low-skill workers) encourage automation. But unlike 
in our model, the unbalanced dynamics that this generates are not countered by 
other types of innovations in the long run. Also worth noting is Kotlikoff and Sachs 
(2012), who develop an overlapping generation model in which automation may 
have  long-lasting effects. In their model, automation reduces the earnings of current 
workers, and via this channel, depresses savings and capital accumulation.

The rest of the paper is organized as follows. Section I presents our  task-based  
 framework in the context of a static economy. Section  II introduces capital 
 accumulation and clarifies the conditions for balanced growth in this economy. 
Section  III presents our full model with endogenous technology and establishes, 
under some plausible conditions, the existence, uniqueness, and stability of a 
 balanced growth path with two types of technologies advancing in tandem. Section IV 
 considers the three extensions mentioned above. Section V concludes. Appendix A 
contains the proofs of our main results, while online Appendix  B contains the 
remaining proofs, additional results, and the details of the empirical analysis pre-
sented above.

I. Static Model

We start with a static version of our model with exogenous technology, which 
allows us to introduce our main setup in the simplest fashion and characterize the 

8 Acemoglu and Autor’s model, like ours, is one in which a discrete number of labor types are allocated to a con-
tinuum of tasks. Costinot and Vogel (2010) develop a complementary model in which there is a continuum of skills 
and a continuum of tasks. See also Hawkins, Michaels, and Oh (2015), which shows how a task-based model is 
more successful than standard models in matching the comovement of investment and  employment at the firm level. 

9 The role of technologies replacing tasks in this result can also be seen by noting that with factor-augmenting 
technologies, the direction of innovation may be dominated by a strong market size effect (e.g., Acemoglu 2002). 
Instead, in our model, it is the difference between factor prices that regulates the future path of technological 
change, generating a powerful force toward stability. 
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impact of different types of technological change on factor prices, employment, and 
the labor share.

A. Environment

The economy produces a unique final good  Y  by combining a unit measure of 
tasks,  y(i)  , with an elasticity of substitution  σ ∈ (0, ∞) :

(1)  Y =   
~

 B   ( ∫ 
N−1

  
N
    y  (i)     

σ−1 _ σ    di)    
  σ _ σ−1

  

 , 

where    ~ B  > 0 . All tasks and the final good are produced competitively. The fact 
that the limits of integration run between  N − 1  and  N  imposes that the measure of 
tasks used in production always remains at 1. A new (more complex) task replaces 
or upgrades the lowest-index task. Thus, an increase in  N  represents the upgrading 
of the quality (productivity) of the unit measure of tasks.10

Each task is produced by combining labor or capital with a task-specific 
 intermediate  q(i)  , which embodies the technology used either for automation or 
for production with labor. To simplify the exposition, we start by assuming that 
these intermediates are supplied competitively, and that they can be produced using  
ψ  units of the final good. Hence, they are also priced at  ψ  . In Section III we relax 
this assumption and allow intermediate producers to make profits so as to generate 
 endogenous incentives for innovation.

All tasks can be produced with labor. We model the technological constraints 
on automation by assuming that there exists  I ∈ [N − 1, N]  such that tasks  i ≤ I  
are technologically automated in the sense that it is feasible to produce them with 
capital. Although tasks  i ≤ I  are technologically automated, whether they will be 
produced with capital or not depends on relative factor prices as we describe below. 
Conversely, tasks  i > I  are not technologically automated, and must be produced 
with labor.

The production function for tasks  i > I  takes the form

(2)  y(i) =   
_

 B  (ζ)  [ η     
1 _ ζ    q  (i)     

ζ−1
 _ ζ    +  (1 − η)     

1 _ ζ      (γ(i) l(i))      
ζ−1

 _ ζ   ]    
  ζ _ ζ−1

  

 , 

where  γ(i)  denotes the productivity of labor in task  i  ,  ζ ∈ (0, ∞)  is the elasticity  
of substitution between intermediates and labor,  η ∈ (0, 1)  is the share 
 parameter of this constant elasticity of substitution (CES) production function, 
and    

_
 B  (ζ)  is a  constant included to simplify the algebra. In particular, we set 

   
_

 B  (ζ ) =  ψ   η   (1 − η)   η−1   η   −η   when  ζ = 1 , and    
_

 B  (ζ ) = 1  otherwise.

10 This formulation imposes that once a new task is created at  N  it will be immediately utilized and replace the 
lowest available task located at  N − 1 . This is ensured by Assumption 3, and avoids the need for additional notation 
at this point. We view newly-created tasks as higher productivity versions of existing tasks. 
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Tasks  i ≤ I  can be produced using labor or capital, and their production  function 
is identical to (2) except for the presence of capital and labor as perfectly  substitutable 
factors of production:11

(3)  y(i) =   
_

 B  (ζ)  [ η     
1 _ ζ    q  (i)     

ζ−1
 _ ζ    +  (1 − η)     

1 _ ζ      (k(i) + γ(i) l(i))      
ζ−1

 _ ζ   ]    
  ζ _ ζ−1

  

 . 

Throughout, we impose the following assumption.

ASSUMPTION 1:  γ(i)  is strictly increasing.

Assumption 1 implies that labor has strict comparative advantage in tasks with a 
higher index and will guarantee that, in equilibrium, tasks with lower indices will be 
automated, while those with higher indices will be produced with labor.

We model the demand side of the economy using a representative household with 
preferences given by

(4)  u(C, L) =    (C e   −ν  (L) )   1− θ  −1
  ____________ 

1 − θ   , 

where  C  is consumption,  L  denotes the labor supply of the representative  household, 
and  ν(L)  designates the utility cost of labor supply, which we assume to be 
 continuously differentiable, increasing, and convex, and to satisfy  ν″(L) + (θ − 1)  
× (ν ′(L))   2 /θ > 0  (which ensures that  u(C, L)  is concave). The functional form 
in (4) ensures balanced growth (see King, Plosser, and Rebelo 1988; Boppart and 
Krusell 2016). When we turn to the dynamic analysis in the next section,  θ  will be 
the inverse of the intertemporal elasticity of substitution.

Finally, in the static model, the capital stock,  K  , is taken as given (it will be 
endogenized via household saving decisions in Section II).

B. Equilibrium in the Static Model

Given the set of technologies  I  and  N  , and the capital stock  K  , we now  characterize 
the equilibrium value of output, factor prices, employment, and the threshold task  I * .

In the text, we simplify the exposition by imposing the following assumption.

ASSUMPTION 2: One of the following two conditions holds: 

 (i)   η → 0  , or 

 (ii)   ζ = 1 .

These two special cases ensure that the demand for labor and capital is 
 homothetic. More generally, our qualitative results are identical as long as the 

11 A simplifying feature of the technology described in equation (3) is that capital has the same  productivity in all 
tasks. This assumption could be relaxed with no change to our results in the static model, but without other changes, 
it would not allow balanced growth in the next section. Another simplifying assumption is that  non-automated tasks 
can be produced with just labor. Having these tasks combine labor and capital would have no impact on our main 
results as we show in online Appendix B. 
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degree of  non-homotheticity is not too extreme, though in this case we no longer 
have  closed-form expressions and this motivates our choice of presenting these 
more  general results in Appendix A.12

We proceed by characterizing the unit cost of producing each task as a function 
of factor prices and the automation possibilities represented by  I . Because tasks are 
produced competitively, their price,  p(i) , will be equal to the minimum unit cost of 
production:

(5)  p(i) =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

min  {R,   W _ γ(i)  }    
1−η

 
  

if i ≤ I

  
 

    

  (  W _ γ(i)  )    
1−η

 
  

if i > I

  
 
    ,

where  W  denotes the wage rate and  R  denotes the rental rate of capital.
In equation (5), the unit cost of production for tasks  i > I  is given by the  

effective cost of labor,  W/γ(i)  (which takes into account that the productivity of 
labor in task  i  is  γ(i) ). The unit cost of production for tasks  i ≤ I   is given by  

 min {R,   W _ γ(i)  }  , which reflects the fact that capital and labor are perfect substitutes in 

the production of automated tasks. In these tasks, firms will choose whichever factor 
has a lower effective cost:   R  or  W/γ(i) .

Because labor has a strict comparative advantage in tasks with a higher index, 
there is a (unique) threshold    

~
 I   such that

(6)    W _ 
R   = γ (  ~ I ) . 

This threshold represents the task for which the costs of producing with capital 
and labor are equal. For all tasks  i ≤   

~
 I  , we have  R ≤ W/γ(i) , and without any 

other constraints, these tasks will be produced with capital. However, if    
~
 I  > I , firms 

 cannot produce all tasks until    
~
 I   with capital because of the constraint imposed by the 

available automation technology. This implies that there exists a unique equilibrium 
threshold task

  I * = min  {I,   
~
 I }  ,

12 The source of non-homotheticity in the general model is the substitution between factors ( capital  or 
labor) and intermediates (the  q(i) s). A strong substitution creates implausible features. For example, 
 automation, which increases the price of capital, may end up raising the demand for labor more than the 
demand for capital, as capital gets substituted by the intermediate inputs. Assumption  2′  in Appendix A imposes 

that    (  γ(N − 1)
 _ γ(N)  )    

max{1, σ}

    1 ______________  

  (  γ (N)
 _ γ (N − 1)  )    

|1−ζ |

  − 1

   > |σ − ζ |  which ensures that the degree of non-homotheticity is not 

too extreme and automation always reduces the relative demand for labor. 
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such that all tasks  i ≤ I *  will be produced with capital, while all tasks  i > I *  will 
be produced with labor.13

Figure 2 depicts the resulting allocation of tasks to factors and also shows how, 
as already noted, the creation of new tasks replaces existing tasks from the bottom 
of the distribution.

As noted in footnote 10, we have simplified the exposition by imposing that new 
tasks created at  N  immediately replace tasks located at  N − 1 , and it is therefore 
profitable to produce new tasks with labor (and hence we have not distinguished  N  ,   
N   ∗  , and   ̃  N  ). In the static model, this will be the case when the capital stock is not too 
large, which is imposed in the next assumption.

ASSUMPTION 3: We have  K <   
_

 K    , where    
_

 K    is such that  R =   W _ γ(N)    .

This assumption ensures that  R >   W _ γ (N)   , and consequently, new tasks will 

increase aggregate output and will be adopted immediately. Outside of this region, 
new tasks would not be utilized, which we view as the less interesting case. This 
assumption is relaxed in the next two sections where the capital stock is endogenous.

We next derive the demand for factors in terms of the (endogenous) threshold  
I *  and the technology parameter  N . We choose the final good as the numéraire. 
Equation (1) gives the demand for task  i  as

13 Without loss of generality, we impose that firms use capital when they are indifferent between using capital 
or labor, which explains our convention of writing that all tasks  i ≤ I *  (rather than  i < I * ) are produced using 
capital. 

Replaced tasks

Automated tasks

Tasks performed by capital

Tasks performed by capital

Labor-intensive tasks

Labor-intensive tasks

Capital Labor New tasks

N − 1

N − 1

N − 1 I*  N

N

N N

   
~
 I   

   
~
 I   

   
~
 I   

I* = I

I* = I

I* = I

Panel A

Panel B

Panel C

Figure 2. The Task Space and a Representation of the Effect of Introducing New 
Tasks (Panel B) and Automating Existing Tasks (Panel C )
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(7)  y(i) =    
~ B    

σ−1
  Yp (i)   −σ . 

Let us define   ̂  σ  = σ(1 − η) + ζη  and  B =    
~ B    

  σ−1 ____  ̂  σ −1
  
  . Under Assumption  2, 

 equations (2) and (3) yield the demand for capital and labor in each task as

  k(i ) =  {  B    ̂  σ −1  (1 − η)  YR   − ̂  σ     if i ≤ I *    
0
  

 if i > I *
  , 

and

l(i) =  

⎧
 

⎪

 ⎨ 
⎪

 

⎩
 
0
  

if i ≤ I *

      B    ̂  σ −1 (1 − η)Y   1 ___ γ(i)     (  W ___ γ(i)  )    
−  ̂  σ 

    if i > I *
 .  

We can now define a static equilibrium as follows. Given a range of tasks  
[N − 1, N ] , automation technology  I ∈ (N − 1, N ] , and a capital stock  K  , a static 
equilibrium is summarized by a set of factor prices,  W  and  R  , threshold tasks,    

~
 I   and  

I * , employment level,  L  , and aggregate output,  Y  , such that

•     
~
 I   is determined by equation (6) and  I * = min {I,   

~
 I }  ;

• The capital and labor markets clear, so that

 (8)   B    ̂  σ −1 (1 − η) Y(I * − N + 1) R   − ̂  σ   = K,  

 (9)   B    ̂  σ −1 (1 − η) Y  ∫ 
I *
  

N
     1 _ γ (i)     (  W _ γ (i)  )    

− ̂  σ 
  di = L;  

• Factor prices satisfy the ideal price index condition,

 (10)  (I * − N + 1)  R   1− ̂  σ   +  ∫ 
I *

  
N
     (  W _ γ(i)  )    

1− ̂  σ 
  di =  B   1− ̂  σ  ;  

•  Labor supply satisfies  ν ′(L) = W/C . Since in equilibrium  C = RK + WL  , 
this condition can be rearranged to yield the following increasing labor supply 
function:14

 (11)  L =  L   s  (  W _ 
RK

  ) . 

PROPOSITION 1 (Equilibrium in the Static Model): Suppose that Assumptions 1, 
2, and 3 hold. Then a static equilibrium exists and is unique. In this static equilib-
rium, aggregate output is given by

(12)  Y =   B _ 
1 − η     [ (I * − N + 1)     

1 __  ̂  σ      K     
 ̂  σ −1 ____  ̂  σ     +   ( ∫ 

I *
  

N
   γ  (i)    ̂  σ −1  di)    

  1 __  ̂  σ   
   L     

 ̂  σ −1 ____  ̂  σ    ]    

   ̂  σ  ____  ̂  σ −1
  

 . 

14 This representation clarifies that the equilibrium implications of our setup are identical to one in which 
an upward-sloping quasi-labor supply determines the relationship between employment and wages (and does not 
necessarily equate marginal cost of labor supply to the wage). This follows readily by taking (11) to represent this 
quasi-labor supply relationship. 
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PROOF: 
See Appendix A.

Equation (12) shows that aggregate output is a CES aggregate of capital and 
labor, with the elasticity between capital and labor being   ̂  σ  . The share  parameters are 
endogenous and depend on the state of the two types of technologies and the equilib-
rium choices of firms. An increase in  I * ,  which corresponds to greater  equilibrium 
automation ,  increases the share of capital and reduces the share of labor in this 
aggregate production function, while the creation of new tasks does the opposite.

Figure  3 illustrates the unique equilibrium described in Proposition  1. 
The  equilibrium is given by the intersection of two curves in the  (ω, I)  space, where  

ω =   W _ 
RK    is the wage level normalized by capital income; this ratio is a  monotone 

transformation of the labor share and will play a central role in the rest of our 
 analysis.15 The upward-sloping curve represents the cost-minimizing allocation of 
capital and labor to tasks represented by equation (6), with the constraint that the 
equilibrium level of automation can never exceed  I . The downward-sloping curve,  
ω( I *, N, K)  , corresponds to the relative demand for labor, which can be obtained 
directly from (8), (9), and (11) as

(13)  ln ω +   1 __  ̂  σ    ln  L   s  (ω) =  (  1 __  ̂  σ    − 1)  ln K +   1 __  ̂  σ    ln (  
 ∫ 

I *
  

N
    γ (i)    ̂  σ −1  di

  __________  
I * − N + 1

  ) . 

As we show in Appendix A, the relative demand curve always starts above the cost 
minimization condition and ends up below it, so that the two curves necessarily 
intersect, defining a unique equilibrium as shown in Figure 3.

The figure also distinguishes between the two cases highlighted above. In panel 
A, we have  I * = I <   

~
 I   and the allocation of factors is constrained by  technology, 

15 The increasing labor supply relationship, (11), ensures that the labor share   s L   =   WL ______ RK + WL    is increasing  
in  ω . 

ω
↓
ω′

min  {I,   ~
 I }  min  {I,   ~

 I }  min  {I′,   ~ I }  min   {I′,   ~ I }  

γ  (  ~
 I )   = ωK γ  (  ~

 I )   = ωK

ω = ω  (I *, N, K)  

ω = ω  (I *, N, K)  

iI * = I → I * = I′

ω

I * =    
~
 I  i

Panel A Panel B

Figure 3. Static Equilibrium

Notes: Panel A depicts the case in which    I   *  = I <   
~
  I     so that the allocation of factors is constrained by technology. 

Panel B depicts the case in which    I   *  =   
~
  I   < I   so that the allocation of factors is not constrained by technology and 

is cost-minimizing. The blue curves show the shifts following an increase in   I   to    I′ , which reduce  ω  in the panel A, 
but have no effect in panel B.
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while panel B plots the case where  I * =   
~
 I  < I  and firms choose the cost-minimiz-

ing allocation given factor prices.
A special case of Proposition 1 is also worth highlighting, because it leads to a 

Cobb-Douglas production function with an exponent depending on the degree of 
automation, which is particularly tractable in certain applications.

COROLLARY 1: Suppose that  σ = ζ = 1  and  γ (i) = 1  for all  i . Then aggregate 
output is

  Y =   B _ 
1 − η    K   1−N+I *   L   N−I * . 

The next two propositions give a complete characterization of comparative statics.16

PROPOSITION  2 (Comparative Statics): Suppose that Assumptions  1,  2, and  3 
hold. Let   ε L   > 0  denote the elasticity of the labor supply schedule   L   s  (ω) ; let   

ε γ   =   d ln γ (I)
 _ 

dI
   > 0  denote the semi-elasticity of the comparative advantage 

 schedule; and let

   Λ I   =   
 γ (I *)    ̂  σ −1 

 __________  
 ∫ I *  N   γ  (i)    ̂  σ −1 di

   +   1 _______ 
I * − N + 1

   and  Λ N   =   
 γ (N)    ̂  σ −1 

 _________  
 ∫ I *  N   γ  (i)    ̂  σ −1  di

   +   1 ________ 
I * − N + 1 

  . 

• If  I * = I <   
~
 I   ,  so that the allocation of tasks to factors is constrained by 

technology,  then:

  (i) the impact of technological change on relative factor prices is given by

    d ln (W/R)
 _ 

dI
   =   d ln ω _ 

dI
   = −    1 _____  ̂  σ  +  ε L  

    Λ I   < 0,

    d ln (W/R)
 _ 

dN
   =   d ln ω _ 

dN
   =   1 _____  ̂  σ  +  ε L  

     Λ N   > 0; 

  (ii) and the impact of capital on relative factor prices is given by

    d ln (W/R)
 _ 

d ln K
   =   d ln ω _ 

d ln K
   + 1 =   

1 +  ε L   _____  ̂  σ  +  ε L  
   > 0. 

• If  I *  =    
~
 I   <  I ,  so that the allocation of tasks to factors is cost-minimizing, then: 

  (i) the impact of technological change on relative factor prices is given by

    d ln (W/R)
 _ 

dI
   =   d ln ω _ 

dI
   = 0,   d ln (W/R)

 _ 
dN

   =    d ln ω _ 
dN

   =   1 _  σ free   +  ε L      Λ N   > 0, 

  where

   σ free   =  ̂  σ  +   1 _  ε γ      Λ I   >  ̂  σ ; 

16 In this proposition, we do not explicitly treat the case in which  I * = I =   
~
 I   in order to save on space and 

notation, since in this case left and right derivatives with respect to  I  are different. 
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  (ii) and the impact of capital on relative factor prices is given by

    d ln (W/R)
 _ 

d ln K
   =   d ln ω _ 

d ln K
   + 1 =   1 +  ε L   _  σ free   +  ε L     > 0. 

• In all cases, the labor share and employment move in the same direction as  

ω:     dL _ 
dN

   > 0  and, when  I * = I ,    dL _ 
dI

   < 0 .

PROOF: 
See online Appendix B.
 
The main implication of Proposition  2 is that the two types of  technological 

change   (automation and the creation of new tasks)  have polar implications. 
An  increase in  N   ( the creation of new tasks)  raises  W/R  , the labor share, and 
employment. An increase in  I   (an improvement in automation technology) reduces  
W/R  , the labor share, and employment (unless  I * =   

~
 I  < I  and firms are not con-

strained by technology in their automation choice).17

The reason why automation reduces employment (when  I * = I <   
~
 I   ) is that it 

raises aggregate output per worker more than it raises wages (as we will see next, 
automation may even reduce wages). Thus, the negative income effect on the labor 
supply resulting from greater aggregate output dominates any substitution effect that 
might follow from the higher wages. On the other hand, the creation of new tasks 
always increases employment:  new tasks raise wages more than aggregate output, 
increasing the labor supply. Although these exact results rely on the balanced growth 
preferences in equation (4), similar forces operate in general and create a tendency 
for automation to reduce employment and for new tasks to increase it.

Figure  3 illustrates the comparative statics: automation moves us along the 
 relative labor demand curve in the technology-constrained case shown in panel A 
(and has no impact in panel B), while the creation of new tasks shifts out the relative 
labor demand curve in both cases.

A final implication of Proposition 2 is that the “technology-constrained”  elasticity 
of substitution between capital and labor,   ̂  σ  , which applies when  I * = I <   

~
 I  ,  differs 

from the “technology-free” elasticity,   σ free    , which applies when the decision of 
which tasks to automate is not constrained by technology (i.e., when  I * =   

~
 I  < I  ).  

This is because in the former case, as relative factor prices change, the set of tasks 
performed by each factor remains fixed. In the latter case, as relative factor prices 
change, firms reassign tasks to factors. This additional margin of adjustment implies 
that   σ free   >  ̂  σ  .

PROPOSITION  3 (Impact of Technology on Productivity, Wages, and Factor 
Prices): Suppose that Assumptions 1, 2, and 3 hold, and denote the changes in pro-
ductivity, the change in aggregate output holding capital and labor constant ,  by  d ln  
Y | K, L    .

17 Throughout, by “automation” or “automation technology” we refer to  I , and use “equilibrium automation” 
to refer to  I * .
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• If  I * = I <   
~
 I   ,  so that the allocation of tasks to factors is constrained by 

 technology,  then    W _ γ(  I   ∗  )   > R >   W _ γ(N)    , and

  d ln Y | K, L   =    B    ̂  σ −1  ____ 
1 −  ̂  σ    (  (  W ____ γ(I *)  )    

1− ̂  σ 
   − R   1− ̂  σ  ) dI +    B    ̂  σ  − 1  _____ 

1 −  ̂  σ    ( R   1− ̂  σ   −   (  W _ γ(N)  )    
1− ̂  σ 

 ) dN. 

 That is, both technologies increase productivity.
  Moreover, let   s L    denote the share of labor in net output. The impact of  technology 

on factor prices in this case is given by

    d ln W = d ln Y | K, L   + (1 −  s L   ) (  1 _____  ̂  σ  +  ε L  
    Λ N   dN −   1 _____  ̂  σ  +  ε L  

    Λ I   dI) ,

 d ln R = d ln Y | K, L   −  s L   (  1 _____  ̂  σ  +  ε L  
    Λ N   dN −   1 _____  ̂  σ  +  ε L  

    Λ I   dI) . 

  That is, a higher  N  always increases the equilibrium wage but may reduce the 
rental rate of capital, while a higher  I  always increases the rental rate of capital 
but may reduce the equilibrium wage. In particular, there exists   ̃  K  < ∞  such 
that an increase in  I  increases the equilibrium wage when  K >  ̃  K   and reduces 
it when  K <  ̃  K   .

• If   I   ∗  =   
~
 I  < I , so that the allocation of tasks to factors is not constrained by 

technology,  then    W ____ γ(I *)   = R >   W _ γ(N)    , and

  d ln Y | K, L   =    B    ̂  σ −1  ____ 
1 −  ̂  σ    ( R   1− ̂  σ   −   (  W _ γ(N)  )    

1− ̂  σ 
 ) dN. 

  That is, new tasks increase productivity, but additional automation technologies 
do not.

  Moreover, the impact of technology on factor prices in this case is given by

   d ln W = d ln  Y |    K, L   + (1 −  s L   )   1 _  σ free   +  ε L      Λ N   dN,

 d ln R =  d ln Y |    K, L   −  s L     1 _  σ free   +  ε L      Λ N   dN. 

  That is, an increase in  N  (more new tasks) always increases the equilibrium wage 
but may reduce the rental rate, while an increase in  I  (greater  technological 
automation) has no effect on factor prices.

PROOF: 
See online Appendix B. 

The most important result in Proposition 3 is that, when  I * = I <   
~
 I  ,  automation—

an increase in  I —always increases aggregate output, but has an ambiguous effect on 
the equilibrium wage. On the one hand, there is a positive productivity effect  captured 
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by the term  d ln Y | K, L   : by substituting cheaper capital for expensive labor, automa-
tion raises productivity, and hence the demand for labor in the tasks that are not yet 
automated.18 Countering this, there is a negative displacement effect  captured by 
the term    1 _____  ̂  σ  +  ε L  

    Λ I   . This negative effect occurs because automation  contracts the set 

of tasks performed by labor. Because tasks are subject to  diminishing returns in the 
aggregate production function, (1), bunching workers into fewer tasks puts down-
ward pressure on the wage.

As the equation for  d ln Y | K, L    reveals, the productivity gains depend on the cost 
savings from automation, which are given by the difference between the  effective 
wage at  I * ,  W/γ(I *)  , and the rental rate,  R . The displacement effect dominates the 
 productivity effect when the gap between  W/γ(I *)  and  R  is small: which is guar-
anteed when  K <  ̃  K  . In this case, the overall impact of automation on wages is 
negative.

Finally, Proposition 3 shows that an increase in  N  always raises productivity and 
the equilibrium wage (recall that Assumption 3 imposed that  R > W/γ(N) ). When 
the productivity gains from the creation of new tasks are small, it can reduce the 
rental rate of capital as well.

The fact that automation may reduce the equilibrium wage while  increasing 
 productivity is a key feature of the task-based framework developed here (see also 
Acemoglu and Autor 2011). In our model, automation shifts the range of tasks 
 performed by capital and labor: it makes the production process more  capital 
intensive and less labor intensive, and it always reduces the labor share and the 
wage-rental rate ratio,  W/R . This reiterates that automation is very different 
from  factor-augmenting technological changes and has dissimilar implications. 
The effects of labor- or capital-augmenting technology on the labor share and the 
wage-rental rate ratio depend on the elasticity of substitution (between capital and 
labor). Also, capital-augmenting technological improvements always increase the 
equilibrium wage, and labor-augmenting ones also do so provided that the elasticity 
of substitution is greater than the share of capital in national income.19

II. Dynamics and Balanced Growth

In this section, we extend our model to a dynamic economy in which the  evolution 
of the capital stock is determined by the saving decisions of a  representative 
 household. We then investigate the conditions under which the economy admits a 
balanced growth path (BGP), where aggregate output, the capital stock, and wages 
grow at a constant rate. We conclude by discussing the long-run effects of  automation 
on wages, the labor share, and employment.

18 This discussion also clarifies that our productivity effect is similar to the productivity effect in models of 
offshoring, such as Grossman and Rossi-Hansberg (2008), Rodríguez-Clare (2010), and Acemoglu, Gancia, and 
Zilibotti (2015), which results from the substitution of cheap foreign labor for domestic labor in certain tasks. 

19 For instance, with a constant returns to scale production function and two factors, capital and labor are  q−  
complements. Thus, capital-augmenting technologies always increases the marginal product of labor. To see this, 

let  F(  A K   K,  A L   L)  be such a production function. Then  W =  F L    , and    dW ___ 
d  A K     = K  F LK   = − L  F LL   > 0  (because of 

constant returns to scale). See Acemoglu and Restrepo (2018).
Likewise, improvements in   A L    increase the equilibrium wage provided that the elasticity of substitution between 

capital and labor is greater than the capital share, which is a fairly weak requirement (in other words,   A L    can reduce 
the equilibrium wage only if the elasticity of substitution is low). 
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A. Balanced Growth

We assume that the representative household’s dynamic preferences are given by

(14)   ∫ 
0
  
∞

    e   −ρt  u(C(t), L(t)) dt,  

where  u(C(t), L(t))  is as defined in equation (4) and  ρ > 0  is the discount rate.
To ensure balanced growth, we impose more structure to the comparative 

 advantage schedule. Because balanced growth is driven by technology, and in 
this model sustained technological change comes from the creation of new tasks, 
 constant growth requires productivity gains from new tasks to be exponential.20 
Thus, in what follows we strengthen Assumption 1.

ASSUMPTION 1′:  γ(i)  satisfies

(15)  γ(i) =  e   Ai  with A > 0. 

The path of technology, represented by  {I(t), N(t)} , is exogenous, and we define

  n(t) = N(t) − I(t) 

as a summary measure of technology, and similarly let  n* (t) = N(t) − I *(t)  be a 
summary measure of the state of technology used in equilibrium (since  I *(t) ≤ I(t)  , 
we have  n*(t) ≥ n(t) ). New automation technologies reduce  n(t) , while the 
 introduction of new tasks increases it.

From equation (12), aggregate output net of intermediates, or simply “net  output,” 
can be written as a function of technology represented by  n*(t)  and  γ (I *(t)) =  e   AI *(t)  ,  
the capital stock,  K(t) , and the level of employment,  L(t) , as

(16)   F (K(t),  e   AI *(t) L(t); n*(t)) 

 = B  [ (1 − n*(t))     
1 __  ̂  σ     K (t)     

 ̂  σ  −1 ____  ̂  σ     +   ( ∫ 
0
  n

*(t)  γ  (i)    ̂  σ −1  di)    
  1 __  ̂  σ   
   ( e   AI *(t)  L(t))   

   ̂  σ −1 ____  ̂  σ   
 ]    

   ̂  σ  ____  ̂  σ −1
  

 . 

The resource constraint of the economy then takes the form

   K ˙  (t) = F (K(t),  e   AI(t)  L(t); n* (t))  − C(t) − δK(t), 

where  δ  is the depreciation rate of capital.

20 Notice also that in this dynamic economy, as in our static model, the productivity of capital is the same 
in all automated tasks. This does not, however, imply that any of the previously automated tasks can be used 
regardless of  N . As  N  increases, as emphasized by equation (1), the set of feasible tasks shifts to the right, and 
only tasks above  N − 1  remain compatible with and can be combined with those currently in use. Just to cite a few 
 motivating  examples for this assumption: power looms of the eighteenth and nineteenth century are not compatible 
with  modern textile technology; first-generation calculators are not compatible with computers; many hand and 
mechanical tools are not compatible with numerically controlled machinery; and bookkeeping methods from the 
nineteenth and twentieth centuries are not compatible with the modern, computerized office. 
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We characterize the equilibrium in terms of the employment level  L(t)  , and the 

normalized variables  k(t) = K(t) e   −AI *(t)  , and  c(t) = C(t) e     
1−θ ___ θ  ν(L(t))−AI *(t) .  As in our 

static model,  R(t)  denotes the rental rate, and  w(t) = W(t) e   −AI *(t)   is the normalized 
wage. These normalized variables determine factor prices as

  R(t) =  F K  [k(t), L(t); n*(t)]

 = B  (1 − n*(t))     
1 __  ̂  σ       [ (1 − n *(t))     

1 __  ̂  σ     +   ( ∫ 
0
  n

*(t)   γ  (i)    ̂  σ −1  di)    
  1 __  ̂  σ   
    (  L(t)

 _ 
k(t)  )    

   ̂  σ −1 ____  ̂  σ   

 ]    

  1 ____  ̂  σ −1
  

  

and

 w(t) =  F L   [k(t), L(t);  n   ∗ (t)] 

 = B  ( ∫ 
0
  n

*(t)  γ  (i)    ̂  σ −1  di)    
  1 __  ̂  σ      [ (1 − n*(t))     1 __  ̂  σ       (  

k(t)
 _ 

L(t)  )    
   ̂  σ −1 ____  ̂  σ   

  +   ( ∫ 
0
   n   ∗ (t)   γ  (i)    ̂  σ −1  di)    

  1 __  ̂  σ   

 ]    

  1 ____  ̂  σ −1
  

 . 

The equilibrium interest rate is  R(t) − δ. 
Given time paths for  g(t)  (the growth rate of   e   AI *(t)  ) and  n(t) , a dynamic  equilibrium 

can now be defined as a path for the threshold task  n*(t) , (normalized) capital and 
consumption, and employment,  {k(t), c(t), L(t)} , that satisfies:

•  n*(t) ≥ n(t) , with  n*(t) = n(t)  only if  w(t) > R(t) , and  n*(t) > n(t)  only if  
w(t) = R(t) ;

• The Euler equation,

(17)    
 c ̇  (t) ___ 
c(t)   =   1 _ θ   ( F K   [k(t), L(t); n*(t)] − δ − ρ) − g(t);  

• The endogenous labor supply condition,

(18)  ν ′(L(t))  e     
θ−1 _ θ   ν (L(t))  =   

 F L   [k(t), L(t); n*(t)]  _____________ 
c(t)  ;  

• The representative household’s transversality condition,

(19)    lim  
t→∞   k(t)  e   − ∫ 

0
  
 t
  ( F K  [k(s), L(s); n*(s)]−δ −g(s))ds  = 0; 

• And the resource constraint,

(20)   k ̇  (t) = F (k(t), L(t); n*(t))  − c(t) e   −   1−θ _ θ   ν (L(t))  − (δ + g(t))k(t). 

We also define a balanced growth path (BGP) as a dynamic equilibrium in which 
the economy grows at a constant positive rate, factor shares are constant, and the 
rental rate of capital  R(t)  is constant.
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To characterize the growth dynamics implied by these equations, let us first 
 consider a path for technology such that  g(t) → g  and  n(t) → n , consumption 
grows at the rate  g  and the Euler equation holds:  R(t) = ρ + δ + θg . Suppose first 
that  n*(t) = n(t) = 0  , in which case  F  becomes linear and  R(t) = B . Because the 
growth rate of consumption must converge to  g  as well, the Euler equation (17) is 
satisfied in this case only if  ρ  is equal to

(21)   _ ρ   = B − δ − θg. 

Lemma A2 in Appendix A shows that this critical value of the discount rate divides 
the parameter space into two regions as shown in Figure 4. To the left of   _ ρ    , there 
exists a decreasing curve    ~ n (ρ)  defined over  [ ρ min  ,  

_ ρ  ]  with    ~ n ( _ ρ  ) = 0  , and to the right 
of   _ ρ    , there exists an increasing curve    _ n  (ρ)  defined over  [ _ ρ  ,  ρ max  ]  with    

_
 n  ( _ ρ  ) = 0 ,  

such that:21

• For  n <   ~ n (ρ) , we have    
w(t)

 _ γ(N(t))   > R(t)  and new tasks would reduce aggregate 

output, so are not adopted (recall that  w(t) = W(t)  e   −AI*(t)  );

• For  n >   ~ n (ρ)  , we have    
w(t)

 _ γ(N(t))   < R(t)  and in this case, new tasks raise 

 aggregate output and are immediately produced with labor;
• For  n >   _ n  (ρ)  , we have  w(t) > R(t)  , as a result, automated tasks raise 

 aggregate output and are immediately produced with capital; and

21 The functions   w N   (n)  and   w I   (n)  depicted in this figure are introduced and explained below. 

Figure 4. Behavior of Factor Prices in Different Parts of the Parameter Space

ρmin ρmax

Region 2A: Region 2B:

n

1

0

   ~ n  (ρ)   
_

 n   (ρ)

  w I    (n) > ρ + δ + θg >   w N    (n)
n* = n

  w I    (n) > ρ + δ + θg >   w N    (n)
n* = n

Region 1:
  w N    (n) > ρ + δ + θg 
n* = n

Region 3:
ρ + δ + θg >   w I    (n)
n* =    

_
 n    (ρ) 

  
_ ρ   ρ
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• For  n <   _ n  (ρ)  , we have  w(t) < R(t)  and additional automation would reduce 
aggregate output, so small changes in automation technology do not affect  n*  
and other equilibrium objects.

The next proposition provides the conditions under which a BGP exists, and char-
acterizes the BGP allocations in each case. In what follows, we no longer impose 
Assumption 3, since depending on the value of  ρ  , the capital stock can become large 
and violate this assumption.

PROPOSITION 4 (Dynamic Equilibrium with Exogenous Technological Change): 
Suppose that Assumptions  1′  and 2 hold. The economy admits a BGP with positive 
growth if only if we are in one of the following cases:

 (i) Full Automation:  ρ <  _ ρ    and  N(t) = I(t)  (and  B > δ + ρ >  

  1 − θ _ θ   (B − δ − ρ ) + δ  to ensure the transversality condition). In this case, 

there is a unique and globally stable BGP. In this BGP,  n* (t) = 0  (all tasks 
are produced with capital), and the labor share is zero.

 (ii) Interior BGP with Immediate Automation:  ρ ∈ (  ρ min   ,  ρ max   )  ,   N ˙  (t) =  I ̇  (t) 
= Δ  , and  n(t) = n > max{  _ n  (ρ),   ~ n (ρ)}  (and  ρ + (θ − 1) AΔ > 0  to 
ensure the transversality condition). In this case, there is a unique and 
 globally stable BGP. In this BGP,  n*(t) = n  and  I *(t) = I(t) .

 (iii) Interior BGP with Eventual Automation:  ρ >  _ ρ    ,   N ˙  (t) = Δ  with  
  I ̇  (t) ≥ Δ  , and  n(t) <   _ n  (ρ)  (and  ρ + (θ − 1) AΔ > 0  to ensure the trans-
versality  condition). In this case, there is a unique and globally stable BGP. 
In this BGP,  n*(t) =   _ n  (ρ)  and  I *(t)  =   

~
 I (t) > I(t) .

 (iv) No Automation:  ρ >  ρ max    , and   N ˙  (t) = Δ  (and  ρ + (θ − 1) AΔ > 0  
to  ensure the transversality condition). In this case, there exists a unique 
and  globally stable BGP. In this BGP,  n*(t) = 1  (all tasks are produced 
with labor), and the capital share is zero.

PROOF: 
See Appendix A. 

The first type of BGP in Proposition 4 involves the automation of all tasks, in 
which case aggregate output becomes linear in capital. This case was ruled out 
by Assumption  3 in our static analysis, but as the proposition shows, when the 
 discount rate,  ρ  , is sufficiently small, it can emerge in the dynamic model. A BGP 
with no automation (case (iv)), where growth is driven entirely by the creation of 
new tasks, is also possible if the discount rate is sufficiently large.

More important for our focus are the two interior BGPs where automation and 
the introduction of new tasks go hand-in-hand, and as a result,  n*(t)  is constant 
at some value between 0 and 1; this implies that both capital and labor perform 
a fixed measure of tasks. In the more interesting case where automated tasks are 
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 immediately produced with capital (case (ii)), the proposition also highlights that 
this process needs to be “balanced” itself: the two types of technologies need to 
advance at exactly the same rate so that  n(t) = n .

Balanced growth with constant labor share emerges in this model because the 
net effect of automation and the creation of new technologies proceeding at the 
same rate is to augment labor while keeping constant the share of tasks performed 
by labor ,  as shown by equation (16). In this case, the gap between the two types of 
technologies,  n(t)  , regulates the share parameters in the resulting CES production 
function, while the levels of  N(t)  and  I(t)  determine the productivity of labor in the 
set of tasks that it performs. When  n(t) = n  , technology becomes purely labor-aug-
menting on net because labor performs a fixed share of tasks and labor becomes 
more productive over time in producing the newly-created tasks.22

To illustrate the main implication of the proposition, let us focus on part (ii) with  
  I ̇   =  N ˙   = Δ  and  n(t) = n ≥   _ n  (ρ) . Along such a path,  n*(t) = n  and  g(t) = AΔ .  
Figure  5 presents the phase diagram for the system of differential equations 
 comprising the Euler equation (equation (17)) and the resource constraint 
( equation (20)). This system of differential equations determines the structure of 
the dynamic equilibrium and is identical to that of the neoclassical growth model 
with labor-augmenting technological change and endogenous labor supply (which 
makes the locus for   c ̇   = 0  downward-sloping because of the negative income effect 
on the labor supply).

B. Long-Run Comparative Statics

We next study the log-run implications of an unanticipated and permanent decline 
in  n(t)  , which corresponds to automation running ahead of the creation of new tasks. 
Because in the short run capital is fixed, the short-run implications of this change in 
technology are the same as in our static analysis in the previous section. But the fact 
that capital adjusts implies different long-run dynamics.

Consider an interior BGP in which  N(t) − I(t) = n ∈ (0, 1) . Along this path, 
the equilibrium wage grows at the rate  AΔ . Define   w I   (n) =  lim  t→∞   W(t)/γ(I *(t))  
as  the effective wage paid in the least complex task produced with labor and   
w N   (n) =  lim t→∞   W(t)/γ(N(t))  as the effective wage paid in the most complex task 
produced with labor. Both of these functions are well defined and depend only on  n .  
Figure 4 shows how these effective wages compare to the BGP value of the rental 
rate of capital,  ρ + δ + θg .

The next proposition characterizes the long-run impact of automation on factor 
prices, employment and the labor share in the interior BGPs.

PROPOSITION 5 (Long-Run Comparative Statics): Suppose that Assumptions   1′  
and 2 hold. Consider a path for technology in which  n(t) = n ∈ (0, 1)  ,  n >   ~ n (ρ)  , 
and  g(t) = g  (so that we are in case (ii) or (iii) in Proposition 4). In the unique 
BGP we have that  R(t) = ρ + δ + θg , and

22 This intuition connects Proposition 4 to Uzawa’s Theorem, which implies that balanced growth 
requires a   representation of the production function with purely labor-augmenting technological change (e.g., 
Acemoglu 2009; Grossman et al. 2017). 



1509ACEMOGLU AND RESTREPO: THE RACE BETWEEN MAN AND MACHINEVOL. 108 NO. 6

• For  n <   _ n  (ρ)  , we have that  n*(t) =   _ n  (ρ)  ,   w I   (n) =  w I   (  
_ n  (ρ)) , and   w N   (n)  

=  w N   (  _ n  (ρ)) . In this region, small changes in  n  do not affect the paths of effec-
tive wages, employment, and the labor share;

• For  n >   _ n  (ρ)  , we have that  n*(t) = n  , and   w I   (n)  is increasing and   w N   (n)  is 
decreasing in  n . Moreover, the asymptotic values for employment and the labor 
share are increasing in  n . Finally, if the increase in  n  is caused by an increase 
in  I , the capital stock also increases.

PROOF: 
See online Appendix B. 

We discuss this proposition for  n >   _ n  (ρ) , so that we are in the most  interesting 
region of the parameter space where  I  * = I  and the level of automation is 
 constrained by technology. The long-run implications of automation now differ 
from its  short-term impact. In the long run, automation reduces employment and the 
labor share, but it always increases the wage. This is because in the long run capital 
per worker increases to keep the rental rate constant at  ρ + δ + θg . This implies that 
productivity gains accrue to the scarce factor, labor.23

Figure 6 illustrates the response of the economy to permanent changes in 
 automation. It plots two potential paths for all endogenous variables. The dotted 
line depicts the case where   w I   (n)  is large relative to  R  , so that there are  significant 
productivity gains from automation. In this case, an increase in automation raises 

23 This result follows because   w N   (n)  is decreasing in  n  , and thus a lower  n  implies a higher wage level. This 
result can also be obtained by taking the log derivative of the identity (1 − η)Y = WL + RK, which implies

  d ln  Y |    K, L   =  s L   d ln W + (1 −  s L   ) d ln R. 

In general, productivity gains from technological change accrue to both capital and labor. In the long run, 
 however, capital adjusts to keep the rental rate fixed at  R = ρ + δ + θg  , and as a result,  d ln W =   1 _  s L     d ln Y  |  K, L   > 0  ,  
meaning that productivity gains accrue only to the inelastic factor,  labor. 

c ċ = 0

  k   = 0˙   

k

Figure 5. Dynamic Equilibrium when Technology Is Exogenous and Satisfies  n(t) = n  
and  g(t) = AΔ 
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the wage immediately, followed by further increases in the long run. The solid 
line depicts the dynamics when   w I   (n) ≈ R  , so that the productivity gains from 
 automation are very small. In this case, an increase in automation reduces the wage 
in the short run and leaves it approximately unchanged in the long run. In contrast 
to the concerns that highly productive automation technologies will reduce the wage 
and employment, our model shows that it is precisely when automation fails to 
raise productivity significantly that it has a more detrimental impact on wages and 
employment. In both cases, the duration of the period with stagnant or depressed 
wages depends on  θ  , which determines the speed of capital adjustment following an 
increase in the rental rate.

The remaining panels of Figure 6 show that automation reduces employment 
and the labor share, as stated in Proposition  5. If   ̂  σ  < 1 , the resulting capital 
 accumulation mitigates the short-run decline in the labor share but does not fully 
offset it (this is the case depicted in the figure). If   ̂  σ  > 1  , capital accumulation 
further depresses the labor share,  even though it raises the wage.

The long-run impact of a permanent increase in  N(t)  can also be obtained from the 
proposition. In this case, new tasks increase the wage (because   w I   (n)  is  increasing 
in  n ), aggregate output, employment, and the labor share, both in the short and the 
long run. Because the short-run impact of new tasks on the rental rate of capital is 
ambiguous, so is the response of capital accumulation.

In light of these results, the recent decline in the labor share and the  employment 
to population ratio in the United States can be interpreted as a consequence of 
 automation outpacing the creation of new labor-intensive tasks. Faster automation 
relative to the creation of new tasks might be driven by an acceleration in the rate 
at which  I(t)  advances, in which case we would have stagnant or lower wages in 

Permanent increase 
in automation

Initial path for labor share

Initial path 
for wages

Initial path 
for capital

Permanent increase 
in automation

Permanent increase 
in automation

Permanent increase 
in automation

ln W

  s L   ln K

R

T

T

t

t

T

T

t

t

ρ + δ + θA

Panel C Panel D
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Figure 6. Dynamic Behavior of Wages ( ln W ), the Rental Rate of Capital ( R ),  
the Labor Share (    s L      ), and the Capital Stock Following a Permanent  

Increase in Automation
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the short run while capital adjusts to a new higher level. Alternatively, it might be 
driven by a deceleration in the rate at which  N(t)  advances, in which case we would 
also have low growth of aggregate output and wages. We return to the  productivity 
implications of automation once we introduce our full model with endogenous 
 technological change in the next section.

III. Full Model: Tasks and Endogenous Technologies

The previous section established, under some conditions, the existence of an 
 interior BGP with   N ˙   =  I ̇   = Δ . This result raises a fundamental question: why 
should these two types of technologies advance at the same rate? To answer this 
question we now develop our full model, which endogenizes the pace at which 
 automation and the creation of new tasks proceeds.

A. Endogenous and Directed Technological Change

To endogenize technological change, we deviate from our earlier assumption 
of a perfectly competitive market for intermediates, and assume that ( intellectual) 
 property rights to each intermediate,  q(i) , are held by a technology  monopolist who 
can produce it at the marginal cost  μψ  in terms of the final good, where  μ ∈ (0, 1)  
and  ψ > 0 . We also assume that this technology can be copied by a fringe of 
 competitive firms, which can replicate any available intermediate at a higher 
 marginal cost of  ψ  , and that  μ  is such that the unconstrained monopoly price of 
an intermediate is greater than  ψ . This ensures that the unique equilibrium price 
for all types of intermediates is a limit price of  ψ  , and yields a per unit profit of  
(1 − μ) ψ > 0  for technology monopolists. These profits generate incentives for 
creating new tasks and automation technologies.

In this section, we adopt a structure of intellectual property rights that abstracts 
from the creative destruction of profits.24 We assume that developing a new 
 intermediate that automates or replaces an existing task is viewed as an infringement 
of the patent of the technology previously used to produce that task. For that reason, 
a firm must compensate the technology monopolist who owns the property rights 
over the production of the intermediate that it is replacing. We also assume that this 
compensation takes place with the new inventor making a take-it-or-leave-it offer to 
the holder of the existing patent.

Developing new intermediates that embody technology requires scientists.25 
There is a fixed supply of  S  scientists, which will be allocated to automation  
(  S I   (t) ≥ 0 ) or the creation of new tasks (  S N   (t) ≥ 0 ), so that

   S I   (t) +  S N   (t) ≤ S. 

24 The creative destruction of profits is present in other models of quality improvements such as Aghion and 
Howitt (1992) and Grossman and Helpman (1991), and will be introduced in the context of our model in Section V. 

25 An innovation possibilities frontier that uses just scientists, rather than variable factors as in the  lab-equipment 
specifications (see Acemoglu 2009), is convenient because it enables us to focus on the direction of technological 
change,  and not on the overall amount of technological change. 
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When a scientist is employed in automation, she automates   κ I    tasks per unit of 
time and receives a wage   W  I  S  (t) . When she is employed in the creation of new tasks, 
she creates   κ N    new tasks per unit of time and receives a wage   W  N  S   (t) . We assume that 
automation and the creation of new tasks proceed in the order of the task index  i .  
Thus, the allocation of scientists determines the evolution of both types of 
 technology,  summarized by  I(t)  and  N(t)  , as

(22)   I ̇  (t) =  κ I    S I   (t), and  N ˙  (t) =  κ N    S N   (t). 

Because we want to analyze the properties of the equilibrium locally, we make a 
final assumption to ensure that the allocation of scientists varies smoothly when there 
is a small difference between   W  I  S  (t)  and   W  N  S   (t)  (rather than having  discontinuous 
jumps). In particular, we assume that scientists differ in the cost of effort: when 
 working in automation, scientist  j  incurs a cost of   χ  I   j   Y(t) , and when working in the 
 creation of new tasks, she incurs a cost of   χ   N   j    Y(t) .26 Consequently, scientist  j  will work 

in automation if    
 W  I  S (t) −  W  N  S  (t)

  ____________ 
Y(t)   >  χ  I   j    −  χ  N   j    . We also assume that the  distribution of   

χ  I  j   −  χ  N  j    among scientists is given by a smooth and  increasing  distribution  function  
G  over a support  [− υ, υ] , where we take  υ  to be small enough that   χ  I  j    and   χ  N   j     are 

always less than  max {   κ N    V N   (t)
 _ 

Y(t)   ,    κ I    V I   (t) _ 
Y(t)  }   and thus all  scientists always work.  

For notational convenience, we also adopt the  normalization  G(0) =    κ N   _  κ I   +  κ N     .

B. Equilibrium with Endogenous Technological Change

We first compute the present discounted value accruing to monopolists from 
automation and the creation of new tasks. Let   V I   (t)  denote the value of automating 
task  i = I(t)  (i.e., the task with the highest index that has not yet been automated, 
or more formally  i = I(t) + ε  for  ε  arbitrarily small and positive). Likewise,   V N   (t)  
is the value of creating a new task at  i = N(t) .

To simplify the exposition, let us assume that in this equilibrium  
 n(t) > max {  n ̅  (ρ),   ~ n (ρ)} , so that  I *(t) = I(t)  and newly-automated tasks start being 
produced with capital immediately. The flow profits that accrue to the technology 
monopolist that automated task  i  are

(23)   π I   (t, i ) = bY(t) R (t)   ζ− ̂  σ  ,  

where  b = (1 − μ) B    ̂  σ −1  η  ψ   1−ζ  .27 Likewise, the flow profits that accrue to the 
 technology monopolist that created the labor-intensive task  i  are

(24)   π N   (t, i ) = bY(t)   (  W(t)
 _ γ(i)  )    

ζ− ̂  σ 

 . 

26 The cost of effort is multiplied by  Y(t)  to capture the income effect on the costs of effort in a tractable manner. 
27 This expression follows because the demand for intermediates is  q(i) =  B    ̂  σ −1  η  ψ   −ζ Y(t )R (t )   ζ− ̂  σ   ,  

every  intermediate is priced at  ψ  and the technology monopolist makes a per unit profit of  1 − μ .
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The take-it-or-leave-it nature of offers implies that a firm that automates task  I  
needs to compensate the existing technology monopolist by paying her the present 
discounted value of the profits that her inferior labor-intensive technology would 
generate if not replaced. This take-it-or-leave-it offer is given by28

  b  ∫ 
t
  
∞

    e   − ∫ 
0
  
 τ
  (R(s)−δ)ds  Y(τ)   (  W(τ)

 _ γ(I )  )    
ζ− ̂  σ 

  dτ. 

Likewise, a firm that creates task  N  needs to compensate the existing  technology 
monopolist by paying her the present discounted value of the profits from the 
 capital-intensive alternative technology. This take-it-or-leave-it offer is given by

  b  ∫ 
t
  
∞

    e   − ∫ 
0
  
 τ
  (R(s)−δ)ds  Y(τ ) R  (τ )   ζ− ̂  σ   dτ. 

In both cases, the patent-holders will immediately accept theses offers and reject 
less generous ones.

We can then compute the values of a new automation technology and a new task, 
respectively, as

(25)   V I   (t) = bY(t) ∫ 
t
  
∞

    e   − ∫ 
t
  
  τ
  (R(s)−δ− g y  (s))ds  (R  (τ)   ζ− ̂  σ   −   (w(τ)  e    ∫ 

t
  
 τ
  g(s)ds )    

ζ− ̂  σ 
 )  dτ,  

and

(26)   V N   (t) = bY(t) ∫ 
t
  
∞

    e   − ∫ 
t
  
τ
  (R(s)−δ− g y  (s))ds  (  (  w(τ)

 _ γ(n(t))    e    ∫ 
t
  
 τ
  g(s)ds )    

ζ− ̂  σ 

  − R  (τ )   ζ− ̂  σ  ) dτ, 

where   g y   (t)  is the growth rate of aggregate output at time  t  and as noted above,  g(t)  
is the growth rate of  γ(N(t)) .

To ensure that these value functions are well behaved and non-negative, we impose 
the following assumption for the rest of the paper.

ASSUMPTION 4:   ̂  σ  > ζ .

This assumption ensures that innovations are directed toward  technologies 
that allow firms to produce tasks by using the cheaper (or more productive) 
 factors and, consequently, that the present discounted values from innovation are 
 positive. This assumption is intuitive and reasonable: since intermediates embody 
the  technology that directly works with labor or capital, they should be highly 
 complementary with the relevant factor of production in the production of tasks.29

28 This expression is written by assuming that the patent-holder will also turn down subsequent less generous 
offers in the future. Deriving it using dynamic programming and the one-step-ahead deviation principle leads to 
the same conclusion. 

29 The profitability of introducing an intermediate that embodies a new technology depends on its demand. 
As a factor (labor or capital) becomes cheaper, there are two effects on the demand for  q(i ) . First, the decline in 
costs allows firms to scale up their production, which increases the demand for the intermediate good. The extent 
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The expressions for the value functions,   V I   (t)  and   V N   (t)  in equations (25) and (26) 
are intuitive. The value of developing new automation technologies depends on the 
gap between the cost of producing with labor (given by the effective wage,  w(τ) )  
and the rental rate of capital (recall that   ̂  σ  > ζ ). When the wage is higher,   V I   (t)   
increases and technology monopolists have greater incentives to introduce new 
 automation technologies to substitute capital for the more expensive labor. 
The  expression for   V N   (t)  has an analogous interpretation, and is greater when the 
gap between the rental rate of capital and the cost of producing new tasks with labor 
( w(τ )/γ(n(t )) ) is larger.30

An equilibrium with endogenous technology is given by paths  { K(t ), N(t ), I(t )}  
for capital and technology (starting from initial values  K(0), N(0), I(0) ), paths  
{ R(t ), W(t ),  W  I  S  (t ),  W  N  S   (t )}  for factor prices, paths  {  V N   (t ),  V I   (t )}  for the value 
 functions of technology monopolists, and paths  {  S N   (t ),  S I   (t )}  for the allocation of 
scientists such that all markets clear, all firms and prospective technology monopo-
lists maximize profits, and the representative household maximizes its utility. Using 
the same normalizations as in the previous section, we can represent the equilibrium 
with endogenous technology by a path of the tuple  { c(t ), k(t ), n(t ), L(t ),  S I   (t ),  S N   (t ),  
V I   (t ),  V N   (t )}  such that

• Consumption satisfies the Euler equation (17) and the labor supply satisfies 
equation (18);

• The transversality condition holds

 (27)    lim  
t→∞   (k(t ) + Π(t ))  e   − ∫ 

0
  
t
  (ρ−(1−θ)g(s))ds  = 0, 

  where in addition to the capital stock, the present value of corporate profits  
Π(t ) = I(t)  V I   (t )/Y(t ) + N(t )  V N   (t )/Y(t)  is also part of the representative 
household’s assets;

• Capital satisfies the resource constraint

   k ̇  (t ) =  [1 +   η _ 
1 − η   (1 − μ)] F (k(t), L(t); n*(t))  − c(t)  e   −   1−θ _ θ   ν(L(t))  − (δ + g(t)) k(t), 

of this positive scale effect is regulated by the elasticity of substitution   ̂  σ  . Second, because the cheaper factor 
is substituted for the intermediate with which it is combined, the demand for that intermediate good falls. This 
 countervailing  substitution effect is regulated by the elasticity of substitution  ζ  . The condition   ̂  σ  > ζ  guarantees 
that the former, positive effect dominates, so that prospective technology monopolists have an incentive to introduce 
 technologies that allow firms to produce tasks with cheaper factors. When the opposite holds, i.e.,  ζ >  ̂  σ   , we have 
the  paradoxical situation where technologies that work with more expensive factors are more profitable. In this case, 
the present discounted values from innovation are negative. 

30 There is an important difference between the value functions in (25) and (26) and those in models of directed 
technological change building on factor-augmenting technologies (such as in Acemoglu 1998, 2002). In the latter 
case, the direction of technological change is determined by the interplay of a market size effect favoring the more 
abundant factor and a price effect favoring the cheaper factor. The task-based framework here, combined with the 
assumption on the structure of patents, makes the benefits of new technologies only a function of the factor prices: 
in particular, the difference between the wage rate and the rental rate. This is because factor prices determine the 
profitability of producing with capital relative to labor. Without technological constraints, this would determine the 
set of tasks that the two factors perform. In the presence of technological constraints restricting which tasks can 
be produced with which factor, factor prices determine the incentives for automation (to expand the set of tasks 
produced by capital) and the creation of new tasks (to expand the set of tasks produced by labor).

We should also note that despite this difference, the general results on absolute weak bias of technology in 
Acemoglu (2007) continue to hold here, in the sense that an increase in the abundance of a factor always makes 
technology more biased toward that factor. 
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  where recall that  F (k(t ), L(t ); n*(t ))   is net output (aggregate output net of 

 intermediates) and    η _ 
1 − η    (1 − μ ) F (k(t ), L(t ); n*(t ))   is profits of technology 

monopolists from intermediates;
• Competition among prospective technology monopolists to hire scientists 

implies that   W  I  S  (t ) =  κ I    V I   (t )  and   W  N  S   (t ) =  κ N    V N   (t) . Thus,

   S I   (t ) = SG (   κ I    V I   (t ) _ 
Y(t )   −    κ N    V N   (t )

 _ 
Y(t )  ) ,  S N   (t ) = S [1 − G (   κ I    V I   (t ) _ 

Y(t )   −    κ N    V N   (t )
 _ 

Y(t )  ) ] , 

 and  n(t )  evolves according to the differential equation,

 (28)   n ̇  (t ) =  κ N   S − ( κ N   +  κ I   ) G (   κ I    V I   (t ) _ 
Y(t )   −    κ N    V N   (t )

 _ 
Y(t )  ) S; 

• And the value functions that determine the allocation of scientists,   V I   (t )  and   
V N   (t )  , are given by (25) and (26).

As before, a BGP is given by an equilibrium in which the normalized variables  
c(t ), k(t ) , and  L(t ) , and the rental rate  R(t )  are constant, except that now  n(t )  is 
 determined endogenously. The definition of the equilibrium shows that the  profits 
from automation and the creation of new tasks determine the evolution of  n(t ) : 
whenever one of the two types of innovation is more profitable, more scientists will 
be allocated to that activity.

Consider an allocation where  n(t ) = n ∈ (0, 1) . Let us define the  normalized 
value functions   v I   (n) =  lim t→∞    V I   (t )/Y(t)  and   v N   (n) =  lim t→∞    V N   (t )/Y(t) ,  
which only depend on  n . Equation (28) implies that   n ̇  (t ) > 0  if and only if  
  κ N    V N   (t ) >  κ I    V I   (t) , and   n ̇  (t ) < 0  if and only if   κ N    V N   (t ) <  κ I    V I   (t ) . Thus, if  
  κ I    v I   (n) ≠  κ N    v N   (n)  , the economy converges to a corner with  n(t)  equal to 0 or 1, 
and for an interior BGP with  n ∈ (0, 1)  we need

(29)   κ I    v I   (n) =  κ N    v N   (n). 

The next proposition gives the main result of the paper, and characterizes  different 
types of BGPs with endogenous technology.

PROPOSITION 6 (Equilibrium with Endogenous Technological Change):  
Suppose that Assumptions  1′ , 2, and 4 hold. There exists    

_
 S    such that, when  S <   

_
 S    , 

we have:31

 (i) Full Automation: For  ρ <  _ ρ    , there is a BGP in which  n(t ) = 0   
and thus all tasks are produced with capital (this case also requires  

B > δ + ρ >   1 − θ ____ θ   (B − δ − ρ) + δ  to ensure the transversality condition).

31 The condition  S <   
_
 S    ensures that the growth rate of the economy is not too high. If the growth rate is above 

the threshold implied by    
_
 S    , the creation of new tasks is discouraged (even if current wages are low) because firms 

anticipate that the wage will grow rapidly, reducing the future profitability of creating new labor-intensive tasks. 
This condition also allows us to use Taylor approximations of the value functions in our analysis of local stability. 
Finally, in parts (ii)–( iv) this condition ensures that the transversality condition holds. 
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  For  ρ >  _ ρ    , all BGPs feature  n(t ) = n >   _ n  (ρ) . Moreover, there exists   _ κ   ≥  
κ _  > 0  such that:

 (ii) Unique Interior BGP: if   κ I  / κ N   >  _ κ    there exists a unique BGP. In this 
BGP we have  n*(t ) = n(t ) = n ∈ (  _ n  ( ρ), 1)  and   κ N    v N   (n) =  κ I    v I   (n) . If, 
in addition,  θ = 0  , then the equilibrium is unique everywhere and the BGP 
is globally (saddle-path) stable. If  θ > 0  , then the equilibrium is unique in 
the neighborhood of the BGP and is asymptotically (saddle-path) stable;

 (iii) Multiple BGPs: if   _ κ   >    κ I   _  κ N     >  κ _   , there are multiple BGPs;

 (iv) No Automation: If   κ _  >    κ I   _  κ N      , there exists a unique BGP. In this BGP  
n*(t ) = 1  and all tasks are produced with labor. (When  ρ >  ρ max    , we are 
always in this case.)

PROOF: 
See Appendix A. 

This proposition provides a complete characterization of different types of BGPs. 
Figure 7 shows visually how different BGPs arise in parts of the parameter space.

Further intuition can be gained by studying the behavior   κ I    v I   (n)  and   κ N    v N   (n)  , 
which we do in Figure 8. Lemma A3 shows that, for  S  small, the normalized value 
functions can be written as

   v I  (n) =   
b ( ( ρ + δ + θg)   ζ− ̂  σ   −   w I  (n)   ζ− ̂  σ  )    _____________________  ρ + (θ − 1)g  ,

  v N  (n) =   
b (  w N  (n)   ζ− ̂  σ   −  ( ρ + δ + θg)   ζ− ̂  σ  )    _____________________  ρ + (θ − 1)g   .

The profitability of the two types of technologies depends on the effective wages,   
w I   (n)  and   w N   (n) . A lower value of  n  , which corresponds to additional  automation, 
reduces   w I   (n) :  in other words   w I   (n)  is increasing in  n . This is because of  comparative 
advantage: as more tasks are automated, the equilibrium wage increases less than  
γ(I)  , and it becomes cheaper to produce the least complex tasks with labor, and thus 
automation becomes less profitable. Because   w I   (n)  is increasing in  n  , so is   v I   (n)  
(recall that   σ ˆ   > ζ ). However,   v N   (n)  is also increasing in  n :   w N   (n)  is decreasing in  n  
as the long-run wage increases with automation owing to the productivity effect dis-
cussed in the previous section. We will see next that the fact that   v N   (n)  is increasing 
in  n  creates a force toward multiplicity of BGPs, while the fact that   v I   (n)  is increas-
ing in  n  pushes toward uniqueness and stability.

Panel A of Figure 8 illustrates the first part of Proposition 6 (which parallels the 
first part of Proposition 4): when  ρ <  _ ρ    ,   κ I    v I   (0)  is above   κ N    v N   (0)  for  n <   ~ n ( ρ) . 
In this region it is not optimal to create new tasks. Consequently, there exists a BGP 
with full automation, meaning that all tasks will be automated and produced with 
capital. Reminiscent of Leontief’s “horse equilibrium,” in this BGP labor becomes 
redundant. Intuitively, as also shown in Figure 4, when  ρ <  _ ρ    and  n <   ~ n (ρ)  , we 
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have   w N   (n) > ρ + δ + θg  , which implies that labor is too expensive relative to 
 capital. Utilizing and thus creating new tasks is not profitable. Economic growth in 
this BGP is driven by capital accumulation (because when all tasks are automated, 
aggregate output is linear in capital).

Panel B illustrates the remaining three types of BGPs, which apply when  ρ >  _ ρ   . In this case, at  n = 0  (or at any  n ≤   n ̅  ( ρ) ),   κ I    v I   (n)  is strictly below   κ N    v N   (n)  
and thus a full automation BGP is not possible. The two curves can only inter-
sect for  n ∈ (  n ̅  ( ρ), 1]  , implying that in any BGP, newly automated tasks will be 
immediately produced with capital. As explained above, both of these curves are 
increasing but their relative slopes depend on   κ I  / κ N   . When   κ I  / κ N   <  κ _  ,   κ I    v I   (n)  

Figure 7. Varieties of BGPs

Unique interior BGP

Unique BGP 
with no automation

Full 
automation 
BGP

Multiple BGP

  _ ρ     ρ

   
 κ I   ___ 
 κ N  

   

ρmax

   
_

 κ   

   κ _   

  κ I     v I    (n)

  κ I     v I    (n)

  κ N     v N    (n)

  κ N     v N    (n)

  κ  I  ′     v I    (n)

ρ <   
_ ρ   ρ >   

_ ρ   
   ~ n  (ρ)    

_
 n    (ρ)n n

Panel A Panel B

Figure 8. Asymptotic Behavior of Normalized Values 

Notes: Asymptotic behavior of normalized values. In panel A,     κ  I         v   I      (n)  is everywhere     κ   N        v   N      (n)  and the BGP involves 
full automation. In panel B, if       κ  I   /   κ   N         is sufficiently large, the two curves intersect, and we have an interior BGP 
with both automation and  creation of new tasks. Panel B also shows the effect of an increase in the productivity of 
 scientists in automating tasks from     κ  I         to       κ   I  ′   .
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is not  sufficiently steep relative to   κ N    v N   (n) , and the two never intersect. This 
means that even at  n = 1 , it is not profitable to create new automation technolo-
gies, and all tasks will be produced with labor. In this BGP, capital becomes redun-
dant, and growth is driven by endogenous technological change increasing labor’s 
 productivity as in the standard quality ladder models such as Aghion and Howitt 
(1992) or Grossman and Helpman (1991).

Conversely, when   κ I  / κ N   >  _ κ    , the curve   κ I    v I   (n)  is sufficiently steep relative to  
  κ N    v N   (n)  so that the two curves necessarily intersect and can only intersect once. 
Hence, there exists a unique interior BGP (interior in the sense that now the BGP 
level of  n  is strictly between 0 and 1, and thus some tasks are produced with labor 
and some with capital).

Finally, when   _ κ   >  κ I  / κ N   >  κ _   , the two curves will intersect, but will do so 
 multiple times, leading to multiple interior BGPs.

Proposition 6 also shows that for   κ I  / κ N   >  _ κ    , the unique interior BGP is globally 
 stable provided that the intertemporal elasticity of substitution is infinite (i.e.,  θ = 0 ),  
and locally stable otherwise (i.e., when  θ > 0 ). Because   κ I    v I   (n)  starts below  
  κ N    v N   (n)  at    n ̅  (ρ)  (reflecting the fact that at this point, new automation  technologies 
are not immediately adopted and thus the value of creating these technologies is 0), 
the unique intersection must have the former curve being steeper than the former. At 
this point, a further increase in  n  always raises the value of automating an additional 
task,   v I   (n) , more than the value of creating a new task,   v N   (n) . This ensures that 
increases in  n  beyond its BGP value trigger further automation, while lower values 
of  n  encourage the creation of new tasks, ensuring the stability of the unique BGP.

The asymptotic stability of the interior BGP implies that there are  powerful  market 
forces pushing the economy toward balanced growth. An important  consequence 
of this stability is that technological shocks that reduce  n  (e.g., the arrival of a 
series of new automation technologies) will set in motion self-correcting forces. 
Following such a change, there will be an adjustment process restoring the level of 
 employment and the labor share back to their initial values.

This does not, however, imply that all shocks will leave the long-run prospects 
of labor unchanged. For one, this would not necessarily be the case in a situation 
with multiple steady states, and moreover, certain changes in the environment 
(for  example, a large increase in  B  or a decline in  ρ ) can shift the economy from the 
region in which there is a unique interior BGP to the region with full  automation, 
with disastrous consequences for labor. In addition, the next corollary shows that, 
if  there is a change in the innovation possibilities frontier (in the  κ s) that makes 
it permanently easier to develop new automation technologies, self-correcting 
forces still operate but will now only move the economy to a new BGP with lower 
 employment and a lower labor share.

COROLLARY 2: Suppose that  ρ >  _ ρ    and   κ I  / κ N   >  _ κ   . A one-time permanent 
increase in   κ I  / κ N    leads to a BGP with lower  n  , employment and labor share.

This corollary follows by noting that an increase in   κ I  / κ N    shifts the intersection 
of the curves   κ I    v I   (n)  and   κ N   v(n)  to the left as shown by the blue dotted curve in 
Figure  8, leading to a lower value of  n  in the BGP. This triggers an adjustment 
 process in which the labor share and employment decline over time, but ultimately 
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settle to their new (interior) BGP values. The transition process will involve a 
slower rate of increase of  N  and a more rapid rate of increase of  I  than the BGP. 
Interestingly, if new tasks generate larger productivity gains than automation, this 
transition process will also be associated with a slowdown in productivity growth 
because automation crowds out resources that could be used to develop new tasks.32

In summary, Proposition 6 characterizes the different types of BGPs, and together 
with Corollary  2, it delineates the types of changes in technology that  trigger 
 self-correcting dynamics. Starting from the interior BGP, the effects of (small) 
increases in automation technology will reverse themselves over time, restoring 
employment and the labor share back to their initial values. Permanent changes in 
the ability of society to create new automation technologies trigger self-correcting 
dynamics as well, but these will take us toward a new BGP with lower employment 
and labor share, and may also involve slower productivity growth in the process.

IV. Extensions

In this section we discuss three extensions. First we introduce heterogeneous 
skills, which allow us to analyze the impact of technological changes on inequality. 
Second, we study a different structure of intellectual property rights that introduces 
the creative destruction of profits. Finally, we discuss the welfare implications of 
our model.

A. Automation, New Tasks, and Inequality

To study how automation and the creation of new tasks impact inequality, we now 
introduce heterogeneous skills. This extension is motivated by the observation that 
both automation and new tasks could increase inequality: new tasks favor  high-skill 
workers who tend to have a comparative advantage in new and complex tasks, 
while automation substitutes capital for labor in lower-indexed tasks where  low-skill 
workers have their comparative advantage.

The assumption that high-skill workers have a comparative advantage in new 
tasks receives support from the data. Figure 9 shows that occupations with more new 
job titles in 1980, 1990, and 2000 employed workers with greater average years of 
schooling.33

To incorporate this feature, we assume that there are two types of workers: 
 low-skill workers with time-varying productivity   γ L   (i, t)  in task  i  , and high-skill 
workers with productivity   γ H   (i) . We parametrize these productivities as follows.

32 Forgone productivity gains from slower creation of new tasks will exceed the gains from automation, causing 
a productivity slowdown during a transition to a higher level of automation, if  ρ >  ρ P    , where   ρ P    is defined implic-
itly as the solution to the equation

    1 ____ σ − 1
   ( w I   (n)   1−σ  −  (  ρ P   + δ + θg)   1−σ  ) =   1 ____ σ − 1

   ( (  ρ P   + δ + θg)   1−σ  −  w N   (n)   1−σ ).  

33 As in Figure 1, this figure partials out the demographic composition of employment in each occupation at the 
beginning of the relevant period. See online Appendix B for the same relationship without these controls as well as 
with additional controls. 
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ASSUMPTION  1″ : The productivities of high-skill and low-skill workers are 
given by

  γ H  (i ) =  e    A H  i ,  γ L   (i, t ) =  e   ξ A H  i  Γ(t − T(i)), 

where  Γ  is increasing with   lim x→∞   Γ(x) = 1 ,  ξ ∈ (0, 1] , and  T(i)  denotes the time 
when task  i  was first introduced.

Assumption  1″  is similar to but extends Assumption  1′  in several  dimensions. 
The  ratio   γ H   (i)/ γ L   (i, t)  is increasing in  i , which implies that high-skill workers 
have a  comparative advantage in higher-indexed tasks. But in addition, we also 
let the  productivity of low-skill workers in a task increase over time, as captured 
by the increasing function  Γ . This captures the idea that as new tasks become 
“ standardized,” they can be more productively performed by less skilled  workers 
(e.g., Acemoglu, Gancia, and  Zilibotti 2012), or that workers adapt to new 
 technologies by  acquiring human  capital through training, on-the-job learning, and 
schooling (e.g.,  Schultz  1975; Nelson and Phelps 1966; Galor and Moav 2000; 
Goldin and Katz 2008; and Beaudy, Green, and Sand 2016). Since the function  Γ  
limits to 1 over time, the parameter  ξ  determines whether this standardization effect 
is complete or  incomplete. When  ξ < 1 , the productivity of low-skill  workers 
 relative to  high-skill  workers  converges to   γ L   (i, t)/ γ H   (i) =  γ H    (i)   ξ−1  , and limits to 
zero as more and more advanced tasks are introduced. In contrast, when  ξ = 1 , the 
relative productivity of low-skill  workers converges to  1  for tasks that have been 
around for a long time.

Figure 9. Average Years of Schooling among Workers and the Share of New Job 
Titles in 1980, 1990, and 2000

Note: See online Appendix B for data sources and detailed definitions.
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The structure of comparative advantage ensures that there exists a threshold task  
M  such that high-skill labor performs tasks in   [M, N]  , low-skill labor performs tasks 

in  ( I *, M ) , and capital performs tasks in   [N − 1, I *]  . In what follows, we denote the 
wages of high and low-skill labor by   W H    and   W L   , respectively, and to simplify the 
discussion, we focus on the economy with exogenous technology and assume that the 
supply of high-skill labor is fixed at  H  and the supply of low-skill labor is fixed at  L  .

PROPOSITION 7 (Automation, New Tasks, and Inequality): Suppose Assumptions  
1″  and 2 hold. Suppose also that technology evolves exogenously with   N ˙   =  I ̇   = Δ  
and  n(t) = n > max{  _ n  ( ρ),   ~ n ( ρ)}  (and   A H   (1 − θ )Δ < ρ ). Then, there exists a 
unique BGP. Depending on the value of  ξ  this BGP takes one of the following forms:

 (i)  If  ξ < 1  , in the unique BGP we have   lim t→∞    W H   (t )/ W L   (t ) = ∞ , the share 
of tasks performed by low-skill workers converges to zero, and capital and 
high-skill workers perform constant shares of tasks.

 (ii)   If  ξ = 1  , in the unique BGP   W H   (t)  and   W L   (t)  grow at the same rate as  
the economy, the wage gap,   W H   (t )/ W L   (t ) , remains constant, and capital, 
low-skill, and high-skill workers perform constant shares of tasks. Moreover,   
lim t→∞    W H   (t )/ W L   (t)  is decreasing in  n . Consequently, a permanent increase 
in  N  raises the wage gap   W H   (t )/ W L   (t)  in the short run, but reduces it in the 
long run, while a permanent increase in  I  raises the wage gap in both the 
short and the long run.

Like all remaining proofs in the paper, the proof of this proposition is in online 
Appendix B.

When  ξ < 1 , this extension confirms the pessimistic scenario about the 
 implications of new technologies for wage inequality and the employment  prospects 
of low-skill workers :  both automation and the creation of new tasks increase inequal-
ity, the former because it displaces low-skill workers ahead of  high-skill workers, 
and the latter because it directly benefits high-skill workers who have a comparative 
advantage in newer, more complex tasks relative to low-skill workers. As a result, 
low-skill workers are progressively squeezed into a smaller and smaller set of tasks, 
and wage inequality grows without bound.

However, our extended model also identifies a countervailing force, which becomes 
particularly potent when  ξ = 1 . Because new tasks become standardized, they can 
over time be as productively used by low-skill workers. In this case, automation 
and the creation of new tasks still reduce the relative earnings of low-skill workers 
in the short run, but their long-run implications are very different. In the long run, 
 inequality is decreasing in  n  (because a higher  n  translates into a greater range of 
tasks for low-skill workers). Consequently, automation increases inequality both in 
the short and the long run. The creation of new tasks, which leads to a permanently 
higher level of  n , increases inequality in the short run but reduces it in the long 
run. These observations suggest that inequality may be high following a period of 
adjustment in which the labor share first declines (due to increases in automation), 
and then recovers (due to the introduction and later standardization of new tasks).
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B. Creative Destruction of Profits

In this subsection, we modify our baseline assumption on intellectual  property 
rights and revert to the classical setup in the literature in which new  technologies do 
not infringe the patents of the products that they replace (Aghion and Howitt 1992; 
Grossman and Helpman 1991). This assumption introduces the  creative  destruction 
effects:  the destruction of profits of previous inventors by new  innovators. We will see 
that this alternative structure has similar implications for the BGP, but  necessitates 
more demanding conditions to guarantee its  uniqueness and stability.

Let us first define   V N   (t, i)  and   V I   (t, i)  as the time  t  values for technology  monopolist 
with, respectively, new task and automation technologies. These value functions 
 satisfy the following Bellman equations:

  r (t)  V N   (t, i ) −   V ̇   N   (t, i ) =  π N   (t, i ), r (t)  V I   (t, i ) −   V ̇   I   (t, i ) =  π I   (t, i ). 

Here   π I   (t, i )  and   π N   (t, i )  denote the flow profits from automating and creating new 
tasks, respectively, which are given by the formulas in equations (23) and (24).

For a firm creating a new task  i , let   T    N  (i)  denote the time at which it will be replaced 
by a technology allowing the automation of this task. Likewise, let   T    I (i)  denote 
the time at which an automated task  i  will be replaced by a new task using labor. 
Since firms anticipate these deterministic replacement dates, their value  functions 
also satisfy the boundary conditions   V N   ( T     N  (i ), i ) = 0  and   V I   ( T    I  (i ), i ) = 0 . 
Together with these boundary conditions, the Bellman equations solve for

  V  N  CD  (t ) =  V N   (N(t ), t ) = b ∫ 
t
   T    N (N(t))    e   − ∫ 

t
  
 τ
  (R(s)−δ)ds  Y(τ)   (  W(τ )

 _ γ(N(t ))  )    
ζ− ̂  σ 

  dτ, 

 V  I  CD  (t ) =  V I   (I(t ), t ) = b ∫ 
t
   T    I (I(t))    e   − ∫ 

t
  
 τ
  (R(s)−δ)ds  Y(τ )  (min {R(τ ),   

W(τ )
 _ 

γ(I(t ))
  } )    

ζ− ̂  σ 

  dτ. 

For reasons that will become evident, we modify the innovation possibilities 
frontier to

(30)   I ̇  (t ) =  κ I   ι(n(t ))  S I   (t ), and  N ˙  (t ) =  κ N    S N   (t ) .

Here, the function  ι(n(t ))  is included and assumed to be nondecreasing to capture the 
possibility that automating tasks closer to the frontier (defined as the  highest-indexed 
task available) may be more difficult.

Let us again define the normalized value functions as   v  I  CD   (n)  

=  lim t→∞      V  I  CD  (t)
 _ 

Y(t)    and   v  N  CD  (n) =  lim t→∞      V  N  CD  (t)
 _ 

Y(t)    . In a BGP, the normalized value 

 functions only depend on  n  because newly-created tasks are automated after a 
period of length   T    N  (N(t)) − t = n/Δ  , and newly-automated tasks are replaced by 

new ones after a period of length   T    I  (I(t)) − t =   1 − n _ Δ    , where  Δ =    κ I    κ N   ι(n)
 _  κ I   ι(n) +  κ N  

   S  is 
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the endogenous rate at which  N  and  I  grow. The endogenous value of  n  in an interior 
BGP satisfies

   κ I   ι(n)  v  I  CD  (n)  =  κ N    v  N  CD  (n) . 

The next proposition focuses on interior BGPs and shows that, because of 
 creative destruction, we must impose additional assumptions on the function  ι(n)  
to  guarantee stability.

PROPOSITION 8 (Equilibrium with Creative Destruction): Suppose that  ρ >  _ ρ    , 
Assumptions   1′ , 2, and 4 hold, and there is creative destruction of profits. Then,

 (i)  There exist   _ ι    and   ι _  <  _ ι    such that if  ι (0) <  ι _   and  ι (1) >  _ ι    , then there is 
at least one locally stable interior BGP with  n(t ) = n ∈ (  _ n  ( ρ), 1). 

 (ii)  If  ι (n)  is constant, there is no stable interior BGP (with  n(t ) = n ∈ (  _ n  ( ρ), 1) ).  
Any stable BGP involves  n(t ) → 0  or  n(t ) → 1 .

The first part of the proposition follows from an analogous argument to that in the 
proof of Proposition 6, with the only difference being that, because of the presence 
of the function  ι (n)  in equation (30), the key condition that pins down  n  becomes   
κ I   ι(n)  v  I  CD  (n) =  κ N    v  N  CD  (n) .

The major difference with our previous analysis is that creative destruction 
 introduces a new source of instability. Unlike the previous case with no creative 
destruction, we now have that   v  I  CD  (n)  is decreasing in  n . As more tasks are  automated, 
the rental rate remains unchanged and newly-automated tasks will be replaced less 
frequently (recall that newly-automated tasks are replaced after  (1 − n )/Δ  units 
of  time). As a result, automating more tasks renders further  automation more 
 profitable. Moreover,   v  N  CD  (n)  continues to be increasing in  n . This is for two  reasons: 
first, as before, the productivity effect ensures that the effective wage in new tasks,   
w N   (n) , is decreasing in  n ; and second, because newly-created tasks are automated 
after  n/Δ  units of time, an increase in  n  increases the present discounted value of 
profits from new tasks. These observations imply that, if  ι(n)  were constant, the 
intersection between the curves   κ N    v  N  CD  (n)  and   κ I   ι(n)  v  I  CD  (n)  would correspond to 
an unstable BGP.

Economically, the instability is a consequence of the fact that, in contrast to our 
baseline model (and the socially planned economy which we describe in the next 
subsection), here innovation incentives depend on the total revenue that a  technology 
generates rather than its incremental value created (the difference between these 
revenues and the revenues that the replaced technology generated). In our baseline 
model, the key force ensuring stability is that incentives to automate are shaped by 
the cost difference between producing a task with capital or with labor :  by  lowering 
the effective wage at the next tasks to be automated, current automation reduces the 
incremental value of additional automation. This force is absent when innovators 
destroy the profits of previous technology monopolists because they no longer care 
about the cost of production with the technology that they are replacing.
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C. Welfare

We study welfare from two complementary perspectives. First, in online  
Appendix  B, we discuss the socially optimal allocation in the presence of 
 endogenous technology and characterize how this allocation can be decentralized. 
One of the main insights from Proposition 6 is that the expected path for factor 
prices  determines the incentives to automate and create new tasks. We show that a 
 planner would also  allocate scientists according to the same principle—guided by 
the cost savings that each technology grants to firms. Although similar to the  efficient 
 allocation of  scientists in this regard, the decentralized equilibrium is  typically inef-
ficient because the technology monopolists neither capture the full benefits from the 
new tasks they create nor internalize how their innovation affects other existing and 
future  technology monopolists.

The second perspective is more novel and relevant to current debates about 
 automation reducing employment and its policy implications. We examine whether 
an exogenous increase in automation could reduce welfare. Even though  automation 
expands productivity, a force which always raises welfare,  it also reduces  employment. 
When the labor market is fully competitive as in our  baseline model, this reduction 
in employment has no first-order welfare cost for the  representative household (who 
sets the marginal cost of labor supply equal to the wage). Consequently, automa-
tion increases overall welfare. Next suppose that there are labor market frictions. In 
particular, suppose that there exists an upward-sloping quasi-labor supply schedule,   
L qs   (ω)  , which constrains the level of employment, so that  L ≤  L qs   (ω)  (see online 
Appendix B for a microfoundation). This  quasi-labor supply schedule then acts in 
a very similar fashion to the labor supply curve derived in (11) in Section I, except 
that the marginal cost of labor supply is no longer equated to the wage. Crucially, the 
reduction in employment resulting from automation now has a negative impact on 
welfare, and this negative effect can exceed the positive impact following from the 
productivity gains, turning automation, on net, into a negative for welfare.

The next proposition provides the conditions under which automation can reduce 
welfare in the context of our static model with exogenous technology. Our focus 
on the static model is for transparency. The same forces are present in the dynamic 
model and also in the full model with endogenous technology.

PROPOSITION 9 (Welfare Implication of Automation): Consider the static 
 economy and suppose that Assumptions 1, 2, and 3 hold, and that  I * = I <   

~
 I   .  

Let   = u(C, L)  denote the welfare of representative household.

 (i)  Consider the baseline model without labor market frictions, where the 
 representative household chooses the amount of labor without constraints 
and thus  W/C = ν ′(L) . Then,

    d _ 
dI

   =   (C e   −ν(L) )    
1−θ

     B    ̂  σ −1  _____ 
1 −  ̂  σ    (  (  W _ γ(I)  )    

1− ̂  σ 
  −  R   1− ̂  σ  )  > 0,

   d _ 
dN

   =    (C e   −ν (L) )    
1−θ

     B    ̂  σ −1  _____ 
1 −  ̂  σ    ( R   1− ̂  σ   −   (  W _ 

γ(N)
  )    

1− ̂  σ 
 )  > 0. 
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 (ii)  Suppose that there are labor market frictions, so that employment is 
 constrained by a quasi-labor supply curve  L ≤  L qs   (ω) . Suppose also 
that the  quasi-labor supply schedule   L qs   (ω)  is increasing in  ω  , has an 
 elasticity     ~ ε  L   > 0  , and is binding in the sense that  W/C > ν ′ (L) . Then,

    
d _ 
dI

   =   (C e   −ν (L) )    
1−θ

  [   B    ̂  σ −1  ____ 
1 −  ̂  σ    (  (  W _ γ(I)  )    

1− ̂  σ 
  −  R   1− ̂  σ  )  − L (  W _ 

C
   − ν ′(L))      ~ ε  L  

 _____  ̂  σ  +    ~ ε  L  
    Λ I  ]  ≶ 0,

   d _ 
dN

   =   (C e   −ν (L) )    
1−θ

  [   B    ̂  σ −1  ___ 
1 −  ̂  σ    ( R   1− ̂  σ   −   (  W _ γ(N)  )    

1− ̂  σ 
 )  + L (  W _ 

C
   −  ν ′  (L))      ~ ε  L  

 _____  ̂  σ  +    ~ ε  L  
    Λ N  ]  > 0. 

The first part of the proposition shows that both types of technological 
 improvements increase welfare when the labor market has no frictions. In this case, 
automation increases productivity by substituting cheaper capital for human labor, 
and this leads to less work for workers, but since they were previously choosing 
labor supply optimally, a small reduction in employment does not have a first-order 
impact on welfare, and overall welfare increases. The implications of the creation of 
new tasks are similar.

The situation is quite different in the presence of labor market frictions,  however, 
as shown in the second part. Automation again increases productivity and reduces 
employment. But now, because workers are constrained in their labor supply choices, 
the lower employment that results from automation has a first-order  negative effect on 
their welfare. Consequently, automation can reduce welfare if the productivity gains, 
captured by the first term, are not sufficiently large to compensate for the  second, 
negative term. Interestingly, in this case new tasks increase  welfare even more than 
before, because they not only raise productivity but also expand  employment, and 
by the same logic, the increase in labor supply has a welfare  benefit for the workers 
(since they were previously constrained in their employment).

An important implication of this analysis emphasized further in online  Appendix B 
is that when labor market frictions are present and the direction of  technological change 
is endogenized, there will be a force toward excessive  automation. In  particular, in this 
case, assuming that labor market frictions also  constrain the social planner’s choices, 
the decentralized equilibrium involves too much effort being devoted to improving 
automation relative to what she would like ,  because the social planner recognizes that 
additional automation has a  negative effect through employment.

V. Conclusion

As automation, robotics, and AI technologies are advancing rapidly, concerns 
that new technologies will render labor redundant have intensified. This paper 
develops a comprehensive framework in which these forces can be analyzed and 
contrasted. At the center of our model is a task-based framework. Automation is 
modeled as the (endogenous) expansion of the set of tasks that can be performed 
by capital,  replacing labor in tasks that it previously produced. The main new fea-
ture of our framework is that, in addition to automation, there is another type of 
technological change  complementing labor. In our model, this takes the form of the 
 introduction of new, more complex versions of existing tasks, and it is assumed that 
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labor has a  comparative advantage in these new tasks. We characterize the structure 
of  equilibrium in such a model, showing how, given factor prices, the allocation of 
tasks between capital and labor is determined both by available technology and the 
endogenous choices of firms between producing with capital or labor.

One attractive feature of task-based models is that they highlight the link between 
factor prices and the range of tasks allocated to factors: when the equilibrium range 
of tasks allocated to capital increases (for example, as a result of automation), the 
wage relative to the rental rate and the labor share decline, and the equilibrium wage 
rate may also fall. Conversely, as the equilibrium range of tasks allocated to labor 
increases, the opposite result obtains. In our model, because the supply of labor is 
elastic, automation also tends to reduce employment, while the creation of new tasks 
increases employment. These results highlight that, while both types of  technological 
changes undergird economic growth, they have very different  implications for the 
factor distribution of income and employment.

Our full model endogenizes the direction of research toward automation and 
the creation of new tasks. If in the long run capital is very cheap relative to labor, 
automation technologies will advance rapidly and labor will become redundant. 
However, when the long-run rental rate of capital is not so low relative to labor, our 
framework generates a BGP in which both types of innovation go  hand-in-hand. 
Moreover in this case, under reasonable assumptions, the dynamic equilibrium is 
unique and converges to the BGP. Underpinning this stability result is the impact 
of relative factor prices on the direction of technological change. The task-based 
 framework,   differently from the standard models of directed technological change 
based on factor-augmenting technologies ,  implies that as a factor becomes cheaper, 
this not only influences the range of tasks allocated to it, but also  generates  incentives 
for the introduction of technologies that allow firms to utilize this  factor more 
 intensively. These economic incentives then imply that by reducing the  effective 
cost of labor in the least complex tasks, automation discourages further automation 
and generates a self-correcting force toward stability.

We show in addition that, though market forces ensure the stability of the BGP, 
they do not necessarily generate the efficient composition of technology. If the 
 elastic labor supply relationship results from rents (so that there is a wedge between 
the wage and the opportunity cost of labor), there is an important new distortion: 
because firms make automation decisions according to the wage rate, not the lower 
opportunity cost of labor, there is a natural bias toward excessive automation.

Several commentators are further concerned about the inequality implications of 
automation and related new technologies. We study this question by extending our 
model so that high-skill labor has a comparative advantage in new tasks relative to 
low-skill labor. In this case, both automation (which squeezes out tasks previously 
performed by low-skill labor) and the creation of new tasks (which directly benefits 
high-skill labor) increase inequality. Nevertheless, the long-term implications of the 
creation of new tasks could be very different, because they are later standardized and 
used by low-skill labor. If this standardization effect is sufficiently powerful, there 
exists a BGP in which not only the factor distribution of income (between capital 
and labor) but also inequality between the two skill types stays constant.

We consider our paper to be a first step toward a systematic investigation of differ-
ent types of technological changes that impact capital and labor differentially. Several 
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areas of research appear fruitful based on this first step. First, our model imposes 
that it is always the tasks at the bottom that are automated; in reality, it may be those 
in the middle (e.g., Acemoglu and Autor 2001). Incorporating the  possibility of such 
“middling tasks” being automated is an important  generalization, though ensuring 
a pattern of productivity growth consistent with balanced growth in this case is 
more challenging. Second, there may be technological barriers to the  automation 
of certain tasks and the creation of new tasks across industries (e.g., Polanyi 1976; 
Autor, Levy, and Murnane 2003). An interesting step is to  construct  realistic  models 
in which the sectoral composition of tasks performed by capital and labor as well 
as technology evolves endogenously and is subject to  industry-level  technological 
 constraints (e.g., on the feasibility or speed of  automation). Third, in this paper we 
have focused on the creation of new  labor-intensive tasks as the type of  technological 
change that complements labor and plays a countervailing role against  automation. 
Another interesting area is to theoretically and empirically investigate  different types 
of technologies that may complement labor. Fourth, our analysis of the  creation of 
new tasks and standardization abstracted from the need for workers to acquire new 
skills to work in such tasks. In practice, the acquisition of new skills may need 
to go hand-in-hand with workers shifting to newer tasks, and the  inability of the 
educational system to adapt to the requirements of these new tasks could become 
a bottleneck and prevent the rebound in the demand for labor following a wave of 
automation. Finally, and perhaps most important, our model highlights the need for 
additional empirical evidence on how automation impacts employment and wages 
(which we investigate in Acemoglu and Restrepo 2017a) and how the  incentives 
for  automation and the creation of new tasks respond to policies, factor prices, and 
supplies (some aspects of which are studied in Acemoglu and Restrepo 2018b).

Appendix A: Proofs

A. General Model

The analysis in the text was carried out under Assumption 2, which imposed  
η → 0  or  ζ = 1 , and significantly simplified some of the key expressions. 
Throughout the Appendix, we relax Assumption 2 and replace it with the following.

ASSUMPTION 2′: One of the following three conditions holds: (i)  η → 0 ; (ii)  
ζ = 1 ; or (iii) 

(A1) |σ − ζ| <    (  
γ (N − 1) ________ γ (N)  )    

max{1, σ}

      1 ________________  

  (  
γ (N) _____ γ(N − 1)  )    

|1 − ζ|
  − 1

   .

All of our qualitative results remain true and will be proved under this more  general 
assumption. Intuitively, the conditions in Assumption  2 ensured  homotheticity 
(see footnote 12). Assumption  2′  , on the other hand, requires that the departure from 
homotheticity is small relative to the inverse of the productivity gains from new 
tasks (where  γ (N )/γ (N − 1)  measures these productivity gains).
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Task prices in this more general case are given by

(A2)  p(i ) =

  

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

 c   u  
(

min {R,   W _ γ(i)  } 
)

  =   [η  ψ   1−ζ  + (1 − η) min   {R,   W _ γ(i)  }    
1−ζ

 ]    
  1 _ 
1−ζ  

 
  

 if i ≤ I

        

 c   u  (  W _ γ(i)  )  =    [η  ψ   1−ζ  + (1 − η)   (  W _ γ(i)  )    
1−ζ

 ]    
  1 _ 
1−ζ  

 

  

 if i > I

 .   

Here   c   u  ( ⋅ )  is the unit cost of production for task  i  , derived from the task  production 
functions, (2) and (3). Naturally, this equation simplifies to (5) under Assumption 2.

From equations (5) and (7), equilibrium levels of task production are

  y(i ) =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 B    ̂  σ −1  Y c   u    
(

min {R,   W _ γ(i)  } 
)

    
−σ

 
  

 if i ≤ I

     
 B    ̂  σ −1  Y c   u    (  W _ γ(i)  )    

−σ
 
  

 if i > I
    .

Combining this with equations (2) and (3), we obtain the task-level demands for 
capital and labor as

  k(i ) =  { 
 B    ̂  σ −1  (1 − η ) Y c   u   (R)   ζ−σ   R   −ζ    if i ≤ I *     
0
  

 if i > I *
    

and

  l(i ) =  

⎧
 

⎪

 ⎨ 
⎪

 

⎩
 
0
  

 if i ≤ I *

      
 B    ̂  σ −1  (1 − η ) Yγ  (i)   ζ−1   c   u    (  W _ γ(i)  )    

ζ−σ
   W   −ζ 

  
 if i > I *     .

Aggregating the preceding two equations across tasks, we obtain the following 
capital and labor market-clearing equations,

(A3)   B    ̂  σ −1  (1 − η ) Y(  I   ∗  − N + 1)  c   u   (R)   ζ−σ   R   −ζ  = K,  

and

(A4)   B    ̂  σ −1  (1 − η ) Y  ∫ 
I *
  

N
   γ  (i )   ζ−1   c   u    (  W _ γ(i)  )    

ζ−σ
   W   −ζ  di =  L   s  (  W _ 

RK  ) . 

Finally, from the choice of aggregate output as the numéraire, we obtain a 
 generalized version of the ideal price condition,

(A5)  ( I * − N + 1)  c   u   (R)   1−σ  +  ∫ 
I *
  

N
    c   u    (  W _ γ(i)  )    

1−σ
  di =  B   1− ̂   σ  ,  

which again simplifies to the ideal price index condition in the text, (10), under 
Assumption 2.
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B. Proofs from Section II

PROOF OF PROPOSITION 1: 
We prove Proposition 1 under the more general Assumption   2′ .
To prove the existence and uniqueness of the equilibrium, we proceed in three 

steps. First, we show that  I * ,  N , and  K   determine unique equilibrium values for  
R, W , and  Y  , thus allowing us to define the function  ω( I *, N, K)  representing the 
relative demand for labor, which was introduced in the text. Second, we prove a 
lemma which ensures that  ω( I *, N, K)  is decreasing in  I *  (and increasing in  N ). 
Third, we show that  min    {I,   

~
 I  }   is nondecreasing in  ω  and conclude that there is 

a unique pair   {ω *, I *}   such that  I * = min    {I,   
~
 I }   and  ω * = ω ( I *, N, K)  . This pair 

uniquely  determines the equilibrium relative factor prices and the range of tasks that 
get effectively automated.

Step 1: Consider  I *, N , and  K  such that  I * ∈ (N − 1, N) . Then,  R, W , and  Y  satisfy 
the system of equations given by capital and labor market-clearing, equations (A3) 
and (A4), and the ideal price index, equation (A5).

Taking the ratio of (A3) and (A4), we obtain

(A6)    
 ∫ 

I *
  

N
  γ  (i )   ζ − 1   c   u    (  W _ γ(i )  )    

ζ − σ
   W   − ζ  di

   ____________________________   
 L   s  (  W _ 

RK  ) (I * − N + 1)  c   u   (R)   ζ− σ   R   − ζ 
   =   1 _ 

K   . 

In view of the fact that   L   s   is increasing and the function   c   u   (x)   ζ−σ   x   −ζ   is decreasing in  
x  (as it can be verified directly by differentiation), it follows that the left-hand side 
is decreasing in  W  and increasing in  R . Therefore, (A6) defines an  upward-sloping 
relationship between  W  and  R , which we refer to as the relative demand curve 
(because it traces the combinations of wage and rental rate consistent with the 
demand for labor relative to capital being equal to the supply of labor divided by 
the capital stock).

On the other hand, inspection of equation (A5) readily shows that this equation 
gives a downward-sloping locus between  R  and  W  as shown in Figure A1, which we 
refer to as the ideal price curve.

The unique intersection of the relative demand and ideal price curves determines 
the equilibrium factor prices for given  I * ,  N , and  K . Because the relative demand 
curve is upward-sloping and the ideal price index curve is downward-sloping, there 
can be at most one intersection. To prove that there always exists an  intersection, 
observe that   lim x → 0    c   u   (x)   ζ− σ   x   −ζ  = ∞ , and that   lim x → ∞    c   u   (x)   ζ− σ   x   −ζ  = 0 .  
These  observations imply that as  W → 0 , the numerator of (A6) limits to infinity, 
and so must the denominator, i.e.,  R → 0 . This proves that the relative demand 
curve starts from the origin. Similarly, as  W → ∞ , the numerator of (A6)  limits 
to zero, and so must the denominator (i.e.,  R → ∞ ). This then implies that the 
 relative demand curve goes to infinity as  R → ∞ . Thus, the upward-sloping  relative 
demand curve  necessarily starts below and ends above the ideal price curve, which 
ensures that there always exists an intersection between these curves. The unique 
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intersection defines the equilibrium values of  W  and  R , and therefore the function  

ω( I *, N, K ) =   W _ 
RK    .

Step 2: This step follows directly from the following lemma, which we prove in 
online Appendix B.

LEMMA A1: Suppose that Assumption  2′  holds,  K <   
_

 K    and  I * ≤   
~
 I  .  

Then  ω( I *, N, K )  is decreasing in  I *  and is increasing in  N .

Although the general proof for this lemma is long (and thus relegated to online  
Appendix B), the lemma is trivial under Assumption 2. In that case, equation (A6) 
yields

  ω  ( I *, N, K)    ̂  σ    L   s  (ω( I *, N, K )) =   
 ∫ 

I *
  

N
  γ  (i)    ̂  σ −1  di

  ___________ 
I * − N + 1

    K   1− ̂  σ   . 

Taking logs, we obtain equation (13) in the main text, which implies that  ω( I *, N, K )  
is increasing in  N  and decreasing in  I * .

Step 3: We now show that  I * = min   {I,   
~
 I  }   is uniquely defined. Because  

 γ  (  
~
 I )  = ωK , we have that  I * = min   {I,   

~
 I  }   is increasing in  ω  and has a vertical 

asymptote at  I .

Consider the pair of equations  ω = ω (I *, N, K )   and  I * = min   {I,   
~
 I }   plot-

ted in Figure  3. Because  ω = ω (I *, N, K )   is decreasing in  I *  for  I * ≤   
~
 I   and  I *  

= min  {I,   
~
 I }  is increasing in  ω  , there exists at most a unique   (ω, I *)   satisfying these 

two equations (or a unique intersection in the figure).
To prove existence, we again verify the appropriate boundary conditions. Suppose 

that  I * → N − 1 . Then from (A3),  R → 0  , while  W > 0  , and thus  ω → ∞ . 
This  ensures that the curve  ω  (I *, N, K)   starts above  I * = min  { I,   

~
 I }   in Figure 3. 

Since  I * = min   {I,   
~
 I }   has a vertical asymptote at  I < N , the two curves must 

 intersect. This observation completes the proof of the existence and uniqueness of 
the equilibrium.

W

R

W (I, N, K )

R (I, N, K )

Relative labor demand

Ideal price index

Figure A1. Construction of the Function  ω(  I   *, N, K )  
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When Assumption 2 holds we can explicitly solve for aggregate output. In this 
case, the market-clearing conditions, (8) and (9), become

  R =   ( B    ̂  σ  −1  (1 − η ) ( I * − N + 1)   Y __ 
K  )    

  1 __ σ  
 , W =    ( B    ̂  σ −1  (1 − η ) ∫ 

I *
  

N
   γ  (i )    ̂  σ  −1  di   Y _ L  )    

  1 __  ̂  σ   
 , 

which combined with (10) yields (12), completing the proof of Proposition 1.  ∎ 

C. Proofs from Section III

LEMMA A2 (Derivation of Figure 4): Suppose that Assumptions    1′  and    2′  hold. 
Consider a path of technology where  n(t ) → n  and  g(t ) → g , consumption grows 
at the rate  g  and the Euler equation (17) holds. Then, there exist   ρ min   <  _ ρ   <  ρ max    
such that:

 (i) If  ρ ∈ [  ρ min   ,  
_ ρ  ]  , there is a decreasing function    ~ n (ρ ) : [  ρ min   ,  

_ ρ   ]  → (0, 1]  
such that for all  n >   ~ n ( ρ)  we have   w I   (n ) > ρ + δ + θg >  w N   (n)  and  
ρ + δ + θg =  w N   (  ~ n ( ρ )) . Moreover,    ~ n (  ρ min   ) = 1  and    ~ n ( _ ρ  ) = 0 .

 (ii) If  ρ ∈ [  _ ρ  ,  ρ max   ] , there is an increasing function    _ n  ( ρ ) : [  _ ρ  ,  ρ max   ]  → (0, 1]  
such that for all  n >   _ n  (ρ)  , we have   w I   ( n ) > ρ + δ + θg >  w N   (n)  and  
ρ + δ + θg =  w I   (  

_ n  ( ρ )) . Moreover,    _ n  (  ρ max   ) = 1  and    _ n  ( _ ρ  ) = 0 .

 (iii) If  ρ >  ρ max    , for all  n ∈ [0, 1]  we have  ρ + δ + θg >  w I   ( n ) ≥  w N   ( n ) , 
which implies that automation is not profitable for any  n ∈ [0, 1] .

 (iv) If  ρ <  ρ min     , for all  n ∈ [0, 1]  we have   w I   (n ) ≥  w N   (n ) > ρ +  δ + θg , 
which implies that new tasks do not increase aggregate output and will not be 
adopted for any  n ∈ [0, 1] .

PROOF: 
Because consumption grows at the rate  g  and the Euler equation (17) holds,  

we have

  R(t ) = ρ + δ + θg. 

The effective wages   w I   (n)  and   w N   (n)  are then determined by the generalized ideal 
price index condition, (A5), as

(A7)   B   1− ̂  σ    = (1 − n)  c   u   ( ρ + δ + θg)   1−σ  +  ∫ 
0
  
 n
    c   u    (   w I   (n)

 _ γ(i )  )    
1−σ

  di

 = (1 − n)  c   u   (ρ + δ + θg)   1−σ  +  ∫ 
0
  
 n
    c   u   (γ(i )  w N   ( n ))   1−σ  di. 
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Differentiating these expressions, we obtain

(A8)    
 w  I  ′  (n) ____  w I  (n)   =   1 ____ 

1 − σ   ( c   u  (ρ + δ + θg)   1−σ  −  c   u   ( w N  (n))   1−σ ) 

  ×   1  __________________________________     
 ∫ 

0
  
 n
    c   u′ (  w N   (n ) γ(i ))  c   u   ( w N   (n) γ (i ))   −σ   w N   (n) γ (i ) di

   ,

   
 w  N  ′  (n) _____  w N  (n)   =    1 _ 

1 − σ   ( c   u   (ρ + δ + θg)   1−σ  −  c   u   (  w I   (n ))   1−σ ) 

  ×   1  ____________________________________     
 ∫ 

0
  
 n
     c   u′    

   (  w N   (n ) γ (i ))  c   u   ( w N   (n) γ(i ))   −σ   w N   (n ) γ (i ) di
   . 

To prove part (i), define   ρ min    as

   ρ min   + δ + θg =  w N   (1), 

and define   _ ρ   >  ρ min    as

   c   u   ( _ ρ   + δ + θg)   1−σ  =  B   1− ̂  σ   . 

(When Assumption 2 holds, we get   _ ρ   = B − δ − θg , as claimed in the main text.)
To show that   _ ρ   >  ρ min    , note that

    1 _ 
1 − σ    c   u   (  ρ min   + δ + θg)   1−σ  =   1 _ 

1 − σ    ∫ 
0
  
1
    c   u   (  ρ min   + δ + θg)   1−σ  di

 =   1 _ 
1 − σ    ∫ 

0
  
1
    c   u   (  w N   (1))   1−σ  di

 <   1 _ 
1 − σ    ∫ 

0
  
1
    c   u   ( w N   (1) γ (i))   1−σ  di

 =   1 _ 
1 − σ     B   1− ̂  σ  

 =   1 _ 
1 − σ    c   u   ( _ ρ   + δ + θg)   1−σ . 

Because the function    1 _ 
1 − σ    c   u   (x)   1− σ   is increasing, we have   _ ρ   >  ρ min   .

Using the generalized ideal price index condition, (A5), we define    ~ n (ρ)  implicitly 
as

   B   1− ̂  σ   = (1 −   ~ n (ρ))  c   u   ( ρ + δ + θg)   1− σ  +  ∫ 
0
     
~ n  (ρ)    c   u   (γ (i ) (ρ + δ + θg))   1−σ  di. 
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Differentiating this expression with respect to  ρ  shows that    ~ n (ρ)  is decreasing. 
Moreover,    ~ n (  ρ min   ) = 1  and    ~ n ( _ ρ  ) = 0  , so    ~ n ( ⋅ )  is well defined for  ρ ∈ [  ρ min   ,  

_ ρ   ] .
For  n =   ~ n (ρ) , we have   w I   (  ~ n (ρ )) > ρ + δ + θg =  w N   (  ~ n ( ρ)) . Thus, the  formulas 

for   w  I  ′  (n)  and   w  N  ′   (N)  show that, for  ρ ∈ [  ρ min   ,  
_ ρ   ]  and starting at    ~ n (ρ)  , the curve   

w N   (n)  is decreasing in  n  and the curve   w I   (n)  is increasing in  n . Thus, for all  n >   ~ n (ρ)  ,  
we have

   w I   (n) >  w I   (  ~ n ( ρ )) > ρ + δ + θg =  w N   (  ~ n ( ρ ))  >  w N   (n), 

as claimed. On the other hand, for all  n <   ~ n ( ρ ) , we have   w N   (n) > ρ + δ + θg .
To prove part (ii), define   ρ max   >  _ ρ    as

   ρ max   + δ + θg =  w I   (1). 

To show that   _ ρ   <  ρ max    , a similar argument establishes

    1 _ 
1 − σ    c   u   (  ρ max   + δ + θg)   1−σ  =   1 _ 

1 − σ    ∫ 
0
  
1
    c   u   (  ρ max   + δ + θg)   1− σ  di

 >   1 _ 
1 − σ    ∫ 

0
  
1
    c   u   ( w I   (1)/ γ (i))   1− σ  di

 =   1 _ 
1 − σ    c   u   (  _ ρ   + δ + θg)   1− σ . 

Because the function    1 _ 
1 − σ    c   u   (x)   1− σ   is increasing, we have   _ ρ   <  ρ max   .

Using (A7), we define the function    
_
 n  (ρ)  implicitly as

   B   1− ̂  σ   = (1 −   _ n  ( ρ))  c   u   ( ρ + δ + θg)   1−σ  +  ∫ 
0
     
_ n  ( ρ)    c   u   (( ρ + δ + θg)/γ( i ))   1−σ  di. 

Differentiating this expression with respect to  ρ  shows that    
_

 n  (ρ)  is increasing in  ρ  
on  [   _ ρ  ,  ρ max   ] . Moreover,    _ n  (  ρ max   ) = 1  and    _ n  ( _ ρ  ) = 0  , so    

_
 n  ( ⋅ )  is well defined for 

all  ρ ≥  _ ρ    .
For  n =   _ n  (ρ)  , we have   w I   (  ~ n ( ρ )) = ρ + δ + θg >  w N   (  ~ n ( ρ )) . Thus, the 

 formulas for   w  I  ′  (n)  and   w  N  ′   (n)  show that, for  ρ ∈ [  _ ρ  ,  ρ max   ]  and starting at    _ n  (ρ) ,  
  w N   (n)  is decreasing in  n  and   w I   (n)  is increasing in  n . Thus, for all  n >   _ n  ( ρ ) ,  
we have

   w I   (n) >  w I   (  
_ n  ( ρ ))  = ρ + δ + θg >  w N   (  _ n  ( ρ ))  >  w N   (n ), 

as claimed. On the other hand, for all  n <   _ n  ( ρ )  , we have   w I   (n ) < ρ + δ + θg . 
In this region we have  n * =   _ n  ( ρ) > n  , and not all automated tasks are produced 
with capital.

To prove part (iii), note that for  ρ >  ρ max    , we have

  ρ + δ + θg >  w I   (1) >  w N   (1). 
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The expressions for   w  I  ′ (n)   and   w  N  ′  (n)  show that in this region, as  n  decreases, so 
does   w I   (n) . Thus,  ρ + δ + θg >  w I   ( n ) >  w N   (n) , and for all these values we have  
n* = 1  , and no task will be produced with capital.

To prove part (iv), note that for  ρ <  ρ min   , we have

  ρ + δ + θg <  w N   (1) <  w I   (1). 

The expressions for   w  I  ′   (n)  and   w  N  ′   (N)  show that, in this region, as  n  decreases, both   
w I   (n) ,   w N   (n)  increase. Thus,  ρ + δ + θg <  w N   (n) <  w I   (n)  and for these  values of  
ρ  , new tasks do not raise aggregate output. ∎

PROOF OF PROPOSITION 4: 
We prove this proposition under the more general Assumption   2′ .
We start by deriving necessary conditions on  N(t)  and  I(t)  such that the economy 

admits a BGP, and then show that these are also sufficient for establishing the exis-
tence of a unique and globally stable BGP.

The capital market-clearing condition implies that

   c   u   (R(t))   σ− ζ  R  (t)   ζ    K(t)
 _ 

Y(t)   =  B    ̂  σ −1  (1 − η ) (1 − n*(t)). 

Because in BGP the rental rate of capital,  R(t) , and the capital to aggregate  
output ratio,  K(t)/Y(t)  , are constant, we must have  n*(t ) = n , or in other words, 
labor and capital must perform constant shares of tasks.

Lemma A2 shows that we have four possibilities corresponding to the four cases 
in Proposition 4, each of which we now discuss in turn.

 (i) All Tasks Are Automated:  n*(t) = n = 0 . Because in this case  capital   
performs all tasks, Lemma A2 implies that we must have  ρ <  _ ρ    and 
 I(t ) = N(t) . In this part of the parameter space, net output is given by   A K   K  ,  

and the  economy grows at the rate    
 A K   − δ − ρ
 ______ θ   . The transversality condition, (19),  

is satisfied if and only if   A K   − δ >   
 A K   − δ − ρ
 ______ θ     — or  r > g . Moreover, 

 positive growth imposes   A K   > δ + ρ . The generalized ideal price index 

condition, equation (A5), then implies that  R =   c   u    −1   (  B      
1− ̂  σ  ____ 
1−σ    )  , and thus  

  A K   =   c   u    −1   (  B      
1− ̂  σ  ____ 
1−σ    )  . Under Assumption  2, this last expression further 

 simplifies to   A K   = B  as claimed in the text.

We now show that these necessary conditions are sufficient to generate balanced 
growth. Suppose  ρ <  _ ρ    and  I(t) = N(t)  so that  n * (t )  = 0 . Because all tasks are 
produced with capital, we also have   F L   = 0  , and thus the representative household 
supplies zero labor. Consequently, the dynamic equilibrium can be characterized as 
the solution to the system of differential equations

    
 C ˙  (t) ___ 
C(t)   =    1 _ θ   ( A K   − δ − ρ),

  K ˙  (t) = (  A K   − δ ) K(t) − C(t) e   ν(0)  θ−1 _ θ   , 
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together with the initial condition,  K(0) > 0  and the transversality condition, 
(19). We next show that there is a unique solution to the system, and this solution 
 converges to the full automation BGP described in the proposition.

Define    ~ c  = C/K  . The behavior of    ~ c   is governed by the differential equation,

    
  c ̃   ˙  (t) ___  c ̃  (t)   =   1 _ θ   ( A K   − δ − ρ) − ( A K   − δ ) +   ~ c (t) e   ν (0)  θ−1 _ θ    . 

This differential equation has a stable rest point at zero and an unstable rest point 

at   c B   =  ( A k   − δ −   1 _ θ   (  A K   − δ − ρ))   e   ν (0)   1−θ _ θ    > 0 . There are therefore three possible 

equilibrium paths for    ~ c (t) : (i) it immediately jumps to   c B    and stays there; (ii) it starts 
at  [ 0,  c B   )  and converges to zero; (iii) it starts at  ( c B   , ∞)  and diverges. The  second and 
third possibilities violate, respectively, the transversality condition (19) (because 
the capital stock would grow at the rate   A k   − δ  , implying  r = g ), and the resource 
constraint (when    ~ c (t ) = ∞ ). The first possibility, on the other hand, satisfies the 
transversality condition (since asymptotically it involves  r > g ), and yields an 
equilibrium path. In this path the economy converges to a unique BGP in which  

C(t )  and  K(t )  grow at a constant rate     
 A K   − δ − ρ
 ______ θ    , thus also establishing uniqueness 

and global stability.

 (ii) Interior Equilibrium in which Automated Tasks Are Immediately 
 Produced with Capital:  n*(t) = n(t) = n ∈ (0, 1) . Because capital 
 performs all  automated tasks, Lemma A2 implies that  n > max  {  _ n  ( ρ),   ~ n ( ρ)}  
and   N ˙  (t) =  I ̇  (t) . Moreover, because in this candidate BGP  R(t)  is constant, 
the general form of the generalized ideal price index condition, (A5), implies 
that  W(t)/γ (I(t))  must be constant too, and this is only possible if   I ̇  (t) = Δ .  
Consequently, the growth rate of aggregate output is  AΔ . Finally, 
the  transversality condition, (19), is satisfied given the condition  
ρ + (θ − 1 ) AΔ > 0  in this part of the proposition. Lemma A2 then  verifies 
that  n *(t) = n >   _ n  (ρ) . Substituting the market-clearing  conditions 
for  capital and labor, (A3) and (A4), into (1), (2), and (3) and then 
 subtracting the costs of intermediates, we obtain net output as  F(k, L; n) .  
(When Assumption  2 holds,  F(k, L; n)  is given by the CES aggregate in 
equation (16)).  F(k, L; n)  exhibits constant returns to scale, and because 
factor markets are  competitive, we also have  R(t) =  F K   (k(t), L(t); n)  and  
 w(t) =  F L   (k (t), L(t); n) .

To establish uniqueness, let   w B    denote the BGP value of the wage rate,   k B    the BGP 
value of the normalized capital stock,   c B    the BGP value of normalized  consumption,   
L B    the BGP value of employment, and   R B    the BGP value of the rental rate of  capital. 
These variables are, by definition, all constant. Then, the Euler  equation, (17), implies   
R B   = ρ + δ + θg , and because   R B   =  F K   (  k B  ,  L B  ; n) , we must also have   k B  / L B   = ϕ , 
where ϕ is the unique solution to

   F K   (ϕ, 1 ; n ) = ρ + δ + θg. 
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Lemma B1 in online  Appendix B shows that, for  n > max  {  _ n  (ρ),  n ̃  (ρ)}  ,  F(ϕ, 1; n)  
satisfies the following Inada conditions,

    lim  
ϕ→0

    F K   (ϕ, 1; n ) > ρ + δ + θg,   lim  
ϕ→∞

    F K   (ϕ, 1; n) < ρ + δ + θg, 

which ensure that ϕ is well defined. Combining the labor supply condition, (18), 
with the resource constraint, (20), we obtain  (F(ϕ, 1; n ) − (δ + g )ϕ)  L B   =   

 F L   (ϕ, 1)
 _____ ν ′ (  L B  )
   .  

The left-hand side of this equation is linear and increasing in  L  (the concavity of  
F  in  k  implies that  F(ϕ, 1; n) > ϕ  F K   (ϕ, 1; n) > (δ + g )ϕ ), while the right-hand 
side is decreasing in  L  . This ensures that there exists a unique value   L B   > 0  that 
 satisfies this equation, and also pins down the value of the normalized capital stock 
as   k B   = ϕ  L B    . Finally,   c B    is uniquely determined from the resource constraint,  
(20), as

   c B   = (F(ϕ, 1; n) − (δ + g )ϕ)  L B    e   ν ( L B  )   1−θ _ θ   . 

Note also that there cannot be any BGP with   L B   = 0  , since this would  
imply   c B   = 0  from the resource constraint, (20). But then we would have  

 ν ′ (0)  e     
θ−1 ___ θ  ν(0)  <   

 F L   (ϕ, 1; n)
 ______  c B      , which contradicts the labor supply optimality  condition, 

(18). Hence, the only possible BGP is one in which  k(t) =  k B    ,  c(t) =  c B   , and  
L(t) =  L B   > 0 . Moreover, in view of the fact that  ρ + (θ − 1 ) AΔ > 0  , this 
 candidate BGP satisfies the transversality condition (19), and is indeed the unique 
BGP. The proof of the global stability of this unique BGP is similar to the analysis 
of global stability of the neoclassical growth model with endogenous labor supply, 
and for completeness, we provide the details in online Appendix B.

 (iii) Interior Equilibrium in which Automated Tasks Are Eventually but Not 
Immediately Produced with Capital:  n *(t) =   _ n  ( ρ) > n(t) . Because 
 capital does not immediately perform all automated tasks, Lemma A2 implies 
that  n(t) <   _ n  ( ρ)  and  ρ >  _ ρ   . Moreover, because  R(t)  is constant, the ideal 
price index condition, (A5), implies that  W(t)/γ( I *(t))  must be constant too. 
Thus, to generate constant growth of wages we must have   I ̇   * (t) = Δ ≤ I(t) ,  
so that the growth rate of the economy is given by  AΔ . Because  n * (t) =   _ n  ( ρ) ,  
this also implies that   N ˙  (t) = Δ  . Finally, the transversality condition, (19), 
is satisfied in view of the fact that this part of the proposition imposes  
ρ + (θ − 1) AΔ > 0 . The uniqueness and global stability of the BGP follow 
from an identical arguments to part (ii), with the only modification that    _ n  ( ρ)  
plays the role of  n  in the preceding proof.

 (iv) All Tasks Are Always Produced with Labor:   n   ∗  (t ) = 1 . Because labor 
 performs all tasks, Lemma A2 now implies  ρ >  ρ max    and  n(t) ≥ 1 , while 
the ideal price index condition, (A5), imposes that  W(t)/γ (N(t))  must be 
 constant. Thus, to generate a constant wage, aggregate output and  capital 
growth, we must have   N ˙  (t) = Δ , with  ρ + (θ − 1)Δ > 0  (where the last 
 condition again ensures transversality). To show sufficiency of these  conditions 
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for balanced growth, let   w B    denote the BGP value of the  normalized wage, 
which is defined by

   ∫ 
0
  
1
    c   u   ( w B  /γ (i))   1−σ  =  B   1− ̂  σ  . 

  Consequently, net output is given by  F(k, L; n ) =  w B   γ (N(t) − 1) L(t) , and 
thus depends linearly on labor and is independent of capital. This implies  
K(t) = 0  and  C(t) =  w B   γ (N(t) − 1) L(t) . The representative household’s 
labor supply condition, (18), implies that in this BGP

  ν ′(L(t)) =    w B   γ(N(t) − 1)
  ___________ 

C(t)   =   1 _ 
L(t)   , 

  which uniquely defines a BGP employment level   L B    . Because this 
 allocation also satisfies the transversality condition (in view of the fact that  
 ρ + (θ − 1)AΔ > 0 ), it defines a unique BGP. Its global stability  follows by 
noting that starting with any positive capital stock,  K(0) > 0   the  representative 
 household chooses zero  investment and converges to this path.  ∎ 

D. Proofs from Section IV

All of the results in this section apply and will be proven under Assumption   2′ .

LEMMA A3 (Asymptotic Behavior of the Normalized Value Functions): Suppose 
that Assumptions   1′ ,   2′ , and 4 hold. Let  g = A   

 κ I    κ N  
 _____  κ I   +  κ N     S  denote the growth rate of the  

economy in a BGP. Then there exists a threshold    
~

 S   such that for  S <   
~

 S  , we have  
ρ + (θ − 1)g > 0  , and:

• If  n ≥ max   {  _ n  ,   ~ n }  , both   v N   (n)  and   v I   (n)  are positive and increasing in  n ;
• If  n ≤   _ n  ( ρ)  (and  ρ >  _ ρ    ), we have   κ N    v N   (n) >  κ I    v I   (n) = (g)  (meaning 

that it goes to 0 as  g → 0 );
• If  n <   ~ n (ρ)  (and  ρ <  _ ρ    ), we have   κ I    v I   (n) > 0 >  κ N    v N   (n).  Moreover, in 

this region,   v I   (n)  is decreasing and   v N   (n)  is increasing in  n  .

PROOF: 
See online Appendix B.

PROOF OF PROPOSITION 6: 
We first show that all the scenarios described in the proposition are BGPs with 

endogenous technology. We then turn to analyzing the stability of interior BGPs.

Part 1: Characterization of the BGPs with Endogenous Technology: Suppose 
that  S <   

~
 S   so that Lemma A3 applies. We consider the two cases described in the 

proposition separately.

 (i)  ρ <  _ ρ    : Suppose that  n <   ~ n ( ρ) . As depicted in panel A of Figure  8 and 
shown in Lemma A3, in this region   v I   (n)  is positive and decreasing in  n  , and   
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v N   (n)  is negative and increasing in  n . Thus, the only possible BGP in this 
region must be one with  n(t ) = 0 . No interior BGP exists with  n ∈ (0,   ~ n ( ρ )) .  
Proposition 4 shows that for  ρ <  _ ρ    , a path for technology with  n(t ) = 0  
yields balanced growth. Moreover, along this path all tasks are produced with 
capital, which implies that   V I   (t ) =  V N   (t ) = 0 . Thus, a path for  technology 
in which  n(t ) = 0  is consistent with the equilibrium allocation of scientists. 
The resulting BGP is an equilibrium with endogenous technology.

 (ii)  ρ >  _ ρ   : Suppose  n(t) ≤   _ n  (ρ) . Then, we have  n *(t ) =   _ n  (ρ)  and there-
fore   v N   (n ) =  v N   (  _ n  ( ρ ))  and   v I   (n) =  v I   (  

_ n  (ρ)) . Moreover, Lemma A3 
implies that   κ N    v N   (  _ n  ( ρ )) >  κ I    v I   (  

_ n  ( ρ))  and   v I   (  
_ n  ( ρ )) = (g)  with  g  small  

(again because  S <   
~

 S   ). Therefore, in this region this region we always have 
that all scientists will be employed to create new tasks, and thus   n ̇   > 0   
(and is uniformly bounded away from zero). But this contradicts  n(t) <   _ n  ( ρ ) .  
Suppose, instead, that  n(t) >   _ n  ( ρ ) . Then, Proposition 4 shows that the 
 economy admits a BGP only if  n(t) = n . Thus, a necessary and sufficient 
condition for an interior BGP is (29) in the text. Consequently, each  interior 
BGP corresponds to a solution to this equation in  (  _ n  ( ρ ), 1) . Lemma  A3 
shows that at    _ n    ,   κ N    v N   (  _ n  )  is above   κ I    v I   (  

_ n  )  , and   κ I    v I   (  
_ n  ) = (g) .  

Moreover, when   κ I  / κ N   = 0  , the entire curve   κ N    v N   (n)  is above   κ I    v I   (n) . 
As this ratio increases, the curve   κ I    v I   (n)  rotates up, and eventually crosses  
  κ N    v N   (n)  at a point to the right of    

_ n  (ρ) . This defines the threshold   κ _  . Above 
this  threshold, there exists another threshold   

_ κ    such that if   κ I  / κ N   >  _ κ    , there 
is a unique intersection of   κ I    v I   (n)  and   κ N    v N   (n) . (Note that one could have   
κ _  =  _ κ   .) By continuity, there exists   ̂  S   such that, the thresholds   κ _   and   _ κ    
are defined for all  S <  ̂  S   (recall that  g = A    κ I    κ N   _  κ I   +  κ N     S ). It then follows that 

for  S < min   {  
~

 S ,  ̂  S }   and   κ I  / κ N   >  _ κ    , there exists a unique BGP, which is 

 interior and  satisfies  n(t ) = n*(t) =  n B   ∈ (  _ n  , 1) . For  S < min   {  ~ S ,  ̂  S }   and   
κ _  <  κ I  / κ N   <  _ κ    (provided that   κ _  <  _ κ   ), the economy admits multiple BGPs 

with  endogenous technology. Finally, for  S < min   {  
~

 S ,  ̂  S }   and   κ I  / κ N   <  κ _   ,  
the only potential BGP is the corner one with  n(t ) = 1  as in part  (iv) of 
Proposition 4. Because   κ N    v N   (1) >  κ I    v I   (1) , this path for technology is 
 consistent with the equilibrium allocation of scientists and provides a BGP 
with endogenous technology.

Part 2: Stability Analysis: The stability analysis applies to the case in which   
ρ >  _ ρ    ,  S < min   {  

~
 S ,  ̂  S }  , and   κ I  / κ N   >  _ κ   . In this case, the economy admits a 

unique BGP defined by   n B   ∈ (  _ n  ( ρ ), 1) . We denote by   c B   ,  k B   , and   L B    the values of 
( normalized) consumption and capital, and employment in this BGP.

PROOF OF GLOBAL STABILITY WHEN  θ = 0 : 
Because  θ = 0  , we also have  R = ρ  +  δ  , and capital adjusts immediately and 

its equilibrium stock only depends on  n , which becomes the unique state variable 
of the model.
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Let  v =  κ I    v I   −  κ N    v N   . Now starting from any  n(0) , an equilibrium with 
 endogenous technology is given by the path of  (n, v)  such that the evolution of the 
state variable is given by

   n ̇   =  κ N   S − (  κ N   +  κ I   )G (v)  S; 

and the evolution of the difference of the normalized value functions,  v , satisfies the 
forward-looking differential equation

  ρv −  v ̇   = b κ I   ( c   u    (ρ + δ)    ζ−σ  −  c   u   ( w I  )    ζ−σ )  − b κ N   ( c   u   ( w N  )    ζ−σ  −  c   u    ( ρ + δ )    ζ− σ )  + ( g ) 

together with the transversality condition (27) holds.
When  g = 0  , the locus for   v ˙   = 0  crosses zero from below at a unique 

point (recall that we are in the parameter region where there is a unique BGP). 
By  continuity there exists a threshold   S ˘    such that, for  S <  S ˘   , the locus for   v ̇   = 0  
crosses zero from below at a unique point   n B    , which denotes the BGP value for  n(t)  
derived from (29).

We now analyze the stability properties of the system and show that the 
BGP is globally saddle-path stable. Figure A2 presents the phase diagram of the sys-
tem in  (v, n) . The locus for   v ̇   = 0  crosses  v = 0  at   n B    from below only once. This 
follows from the fact that   κ I    v I   (n)  cuts   κ N    v N   (n)  from below at   n B    as shown in Figure 8. 
The laws of motion of the two variables,  v  and  n , take the form shown in the phase 
diagram.34 This implies the existence of the unique stable arm, and also establishes 

34 This can also be verified locally from the fact that the behavior of  n  and   v  near the BGP can be  approximated 
by the linear system   n ̇   = − (  κ N   +  κ I   ) G ′  (0 ) Sv  and   v ̇   = ρv − Q,  where  Q > 0  denotes the derivative of  
 − M  κ I    c   u    ( w I  )    ζ− σ  + M  κ N    c   u    (  w N   )    ζ− σ   with respect to  n  (this derivative is positive because   κ I    v I   (n)  cuts   κ N    v N   (n)  
from  below at   n B    ). Because the product of the eigenvalues of the characteristic polynomial of this system is  
 − Q(  κ N   +  κ I   )G′( 0) S < 0  , there is one positive and one negative eigenvalue (and their sum is  ρ > 0  , so the 
 positive one is larger in absolute value). 

Stable arm

n

v = 0˙v

Figure A2. Phase Diagram and Global Saddle Path Stability when   θ = 0  

Notes: The figure plots the locus for      v ˙   = 0   and the locus for   n ˙   = 0  . The unique BGP 
is located at their interception.
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that there are no equilibrium paths that are not along this stable arm. In particular, all 
paths above the stable arm feature   v ˙   > 0  and eventually  n → 0  and  v → ∞ , and 
since   v N    is positive,   v I   → ∞ . But this violates the  transversality  condition, (27). 
Similarly, all paths below the stable arm feature   v ˙   < 0  and  eventually  n → 1  and  
v → − ∞  , and thus   v N   → ∞  , once again violating the transversality condition.

PROOF OF LOCAL STABILITY OF THE UNIQUE BGP WHEN  θ > 0  : 
Online Appendix B shows that there exists a threshold    ̌  S   such that the BGP in this 

case is locally stable for  S <   ̌  S    , and thus the conclusions of the proposition follow 
 setting    

_
 S   = min   {  

~
 S ,  ̂  S ,  S ˘  ,   ̌  S  }  .  ∎ 
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